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Chapter 1

Week 1: Induction

1.1 Induction

Definition 1.1.1: Induction

Suppose you have a sequence of statements S1, S2, S3, .... Suppose you show that (a) S1 is true. (b) When-

ever Sk is true, Sk+1 is also true. Then all Sn are true.

Theorem 1.1.2: Well-ordering Principle (WOP)

If S ⊆ N = {1,2,3...} that is nonempty, then it has a minimal element, i.e, there is a ∈ S such that for any

b ∈ S, a ⩽ b.
({5,6,2,3} ⊂ N)

Proof. Proof that WOP Ô⇒ Induction

Let S = {k ∈ N ∶ Sk is true}. It suffices to shows that S = N. Assume to the contrary that S ≠ N.

Let T ∶= N/S. We are assuming that T ≠ ∅, and we want to reach a contradiction.

By the well-ordering principle, T has a minimal element m. Since S1 is true, 1 ∈ S, and so 1 ∉ T Ô⇒ m ⩾ 2.

Consider m − 1 ⩾ 1. Since m is minimal in T , m − 1 ∉ T Ô⇒ m − 1 ∈ S Ô⇒ Sm−1 is true Ô⇒ Sm is true Ô⇒
m ∈ S Ô⇒ m ∉ T .

But m ∈ T , so we have a contradiction.

Proposition 1.1.3

1 + 2 + 3 + ... + n = n(n + 1)
2

Proof. Let Sn ∶= 1 + 2 + 3 + .. + n. We use inductions to show that Sn =
n(n + 1)

2

Base Case: n = 1, S1 = 1,
1(1 + 1)

2
= 1

4



jacob-southerncity.github.io 1 - Induction Jacob Ma

If Sk =
k(k + 1)

2
, then Sk+1 =

(k + 1)((k + 1) + 1)
2

. Indeed, we have

Sk+1 = 1 + 2 + 3 + ... + k + (k + 1) = Sk + (k + 1) = k(k + 1)
2

+ (k + 1) = (k + 1)(k + 2)
2

Induction concludes the proof.

Proposition 1.1.4

In = ∫
∞

0
tne−t dt = n!forn ⩾ 0

Proof. We use induction.

The base case is that I0 = 1. Indeed,

I0 = ∫
∞

0
e−t dt = −e−t∣

∞

0

= 0 − (−1) = 1

Now, it suffices, by induction, to show that if

Ik = k!, then Ik+1 = (k + 1)!

We have

Ik+1 = ∫
∞

0
tne−t dt

= −tk+1e−t∣
∞

0

+ ∫
∞

0
(k + 1)tke−t dt

= (k + 1)Ik

= (k + 1)(k!)

= (k + 1)!

5
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Chapter 2

Week 2: Strong Induction; Dyadic

Induction; Backwards Induction

2.1 Induction

Example 2.1.1.

(1) Arithmetic:

1 + 2 + 3 + ... + n = n + (n + 1)
2

(2) Calculus:

∫
∞

0
tne−t dt = n!

Proposition 2.1.2

Sn = 12 + 22 + ... + n2 = (2n + 1)(n + 1)n
6

Proof. We apply induction on n

The base case is when n = 1. In this case,

S1 = 12 = 1

and
1(2 ∗ 1 + 1)(1 + 1)

6
= 1

We have now show that for any k, if

Sk =
k(2k + 1)(k + 1)

6

then

Sk+1 =
(k + 1)(2(k + 1) + 1)((k + 1) + 1)

6

6
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Indeed, we have

Sk+1 = 12 + 22 + 32 + ... + k2 + (k + 1)2

= Sk + (k + 1)2

= k(2k + 1)(k + 1)
6

+ (k + 1)2

= k(2k + 1)(k + 1) + 6(k + 1)2

6

= (k + 1) (k (2k + 1) + 6 (k + 1))
6

= (k + 1)(2k2 + 7k + 6)
6

= (k + 1)(2k + 3)(k + 2)
6

Proposition 2.1.3

Suppose n ∈ N and we have a 2n×2n board with a corner removed. Then we can tilt it suing tiles of L-shapes

blocks.

Proof. We apply induction on n.

If n = 1, then our board is simply L-shape.

Now suppose we have such a tiling for 2n × 2n boards with a corner removed.

We want to show that such a tiling is possible for 2n+1 ∗ 2n+1 boards with a corner removed. The L-shape can be

inserted into the intersection of three other 2n × 2n with a corner removed. Thus it will work.

Proposition 2.1.4

√

2 +

√

2 +
√

2 +
√
+... +

√
2 = 2 cos

π

2n+1

Proof. We apply induction on n.

When n = 1, f(1) =
√
2 while 2 cos π

2n+1 =
√
2 as well.

Now suppose the identity is true for k, that is

f(k) = 2 cos( π

2k+1
)

We want to use this to show that f(k + 1) = 2 cos( π
2k+2 )

7
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Note that

f(k + 1) =
√
2 + f(k)

=
√

2 + 2 cos( π

2k+1
)

=
√
2

√
1 + cos( π

2k+1
) Applying 1 + cosx = 2 cos2 (n

2
)

=
√
2

√
2 ⋅ cos2( π

2k+2
)

= 2 cos( π

2k+2
)

Proposition 2.1.5

Define the sequence

a1 =
√
2, an+1 =

√
2
an

, for n ⩾ 1

Does this sequence converge?

Claim 1. It is an increasing sequence (for every n, an ⩽ an+1). We show this by applying induction.

Base case (n = 1) ∶ a1 ⩽ a2 because
√
2 ⩽

√
2

√
2

Suppose now that ak ⩽ ak+1 for a give k. We want to show that this implies that that

ak+1 ⩽ ak+2

However,

ak+1 =
√
2
ak

and ak+2 =
√
2
ak+1

We want to show that
√
2
ak ⩽

√
2
ak+1

Since ak ⩽ ak+1 and f(x) =
√
2
x

is an increasing function. We are done.

Claim 2. For any n, an ⩽ 2.

We apply induction on n.

Base case (n = 1) a1 ⩽
√
2 ⩽ 2

Suppose ak ⩽ 2 for some k, then

ak+1 =
√
2
ak ⩽

√
2
2
= 2

By induction, an ⩽ 2 for all n.

Conclusion. So the sequence (an) converges to some L ⩽ 2

8
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Problem 1

What is L?

We have

L = lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

√
2
an =

√
2
limn→∞ an =

√
2
L

Solution

The solutions to L =
√
2
L

are L = 2 and L = 4. But, using claim 2, we have

∵L ⩽ 2 ∴L = 2

Proposition 2.1.6

Every number in the sequence

1007,10017,100117, ...

is divisible by 53.

Proof. Base Case:

1007 = 53 ∗ 19 Ô⇒ a1 is divisible by 53

ak+1 = 10(ak − 6) + 7 = 10ak − 53

So if ak us is divisible by 53, then ak+1 is also divisible by 53.

Proposition 2.1.7

If α is a real number that

α + 1

α
∈ Z

then for every n ∈ N
αn + 1

αn
∈ Z

Proof. We use Strong Induction.

For n = 1, we are given that

α + 1

α
∈ Z

Consider n + 1.

αn+1 + 1

αn+1
= (αn + 1

αn
)(α + 1

α
) − (αn−1 + 1

αn−1
)

By strong induction, since αn + 1

αn
, α + 1

α
,αn−1 + 1

αn−1
∈ Z by assumption, the identity implies that

αn+1 + 1

αn+1
∈ Z

9
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By strong induction, the conclusion follows.

Theorem 2.1.8: Strong Induction

Suppose we have a sequence of statements

S1, S2, S3, ...

such that

(1) S1 is true.

(2) For every N , if Sk is true for every k < N , then SN .

It then following that Sn is true for every n.

Proposition 2.1.9

For every integer n ⩽ 1

3n+1∣23
n

+ 1

Proof. Base Case: For n = 1, we have

9 = 31+1∣23
1

+ 1 = 9

For n + 1, we have

23
n+1

+ 1 = (23
n

)3 + 1

= (23
n

+ 1)((23
n

)2 − 23
n

+ 1)

This is using the following formula:

a3 + b3 = (a + b) (a2 − ab + b2)

Also note that

(23
n

)
2
− 23

n

+ 1 ≡ ((−1)3
n

)
2
− (−1)3

n

+ 1 ≡ 0 (mod 3)

that is, (23
n

)2 − 23
n

+ 1 is always divisible by 3.

The inductive hypothesis implies that 23
n

+ 1 is divisible by 3n+1. Using the identity above, we obtain that

3n+2 ∣ 23
n+1

+ 1. Thus, the proposition holds for n + 1 if it is true for n.

The conclusion follows by induction.

Proposition 2.1.10

For every k ∈ N,

f (k) ∶= k
7

7
+ k

5

5
+ 2k3

3
− k

105
∈ Z

Proof. We will solve this using induction on k.

10
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First, note that

f (k) = 15k7 + 21k5 + 70k3 − k
105

The claim is equivalent to

105∣15k7 + 21k5 + 70k3 − k =∶ g (k) for every k ∈ N

Base Case: k = 1:

g (1) = 15 + 21 + 70 − 1 = 105 is divisible by105

Suppose 105 ∣ g (k). I claim that then 105 ∣ g (k + 1).
It suffices to show that 105 ∣ g (k + 1) − g (k)
However,

g (k + 1) − g (k) = 105k6 + 315k5 + 630k4 + 735k3 + 735k2 + 420k + 105

is divisible by 105 because all coefficient are divisible by 105 and k ∈ N.

The conclusion follows from induction.

Property 2.1.11: Review on induction

(1) Usual Induction

S1, S2, S3, ... sequence of statements

(1) S1 true

(2) for any k ∈ N, Sk Ô⇒ Sk+1

This implies that Sn is true for every n.

(2) Strong Induction

(1) S1 true

(2) for any k ∈ N, (S1, ..., Sn) Ô⇒ Sk+1

This implies that Sn is true for every n.

Problem 2

If α ∈ R such that

α + 1

α
∈ Z,

the for every n ∈ N,
αn + 1

αn
∈ Z

11
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Solution

Argument relied on the identity

αn+1 +
1

αn+1
= (α + 1

α
)(αn + 1

αn
) − (αn−1 + 1

αn−1
)

Problem 3

Every natural number can be written in the form

±12 + ±22 ± 32... ± n2

Proof. Note that

1 = +12

2 = −12 − 22 − 32 + 42

3 = −12 + 22

4 = 12 − 22 − 32 + 42

Now, in order to repeat the other natural numbers, we do an induction of the form "If k can be represented in

that form, so can k + 4

This follows from the identity

4 =m2 − (m + 1)2 − (m + 2)2 + (m + 4)2 for every m

4 + k = ±12 ± ... ± n2 + (n + 1)2 − (n + 2)2 − (n + 3)2 + (n + 4)2

Problem 4

For every N ∈ N,N ⩾ 2 √

2

√
3
√
...
√
N < 3

Proposition 2.1.12: Generalization of the problem 4

For every m ∈ N,m ⩽ N √

m

√
(m + 1)

√
...
√
N <m + 1

This is a generalization of the problem.

12
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Proof. We do backwards induction on m starting from m = N .

Base case: m = N , in which case we have
√
N < N + 1

Induction hypothesis: Now assume it is true for m = k,m ⩽ N , that is,
¿
ÁÁÀ

k

√

(k + 1)
√

(k + 2)
√
...
√
N < k + 1

Induction step: Using this, we deduce it for m = k − 1 by noting that
¿
ÁÁÀ

(k − 1)

√

k

√
(k + 1)

√
...
√
N <

√
(k − 1) (k + 1) =

√
k2 − 1 < k = (k − 1) + 1

Theorem 2.1.13: Dyadic Induction

Supper we have sequence of statements

S1, S2, S3, ...

Suppose

(1) S2 is true

(2) for every k, S2k Ô⇒ S2k+1

(3) whenever Sn+1 is true, Sn is true

It then follows that Sn is true for every n.

Theorem 2.1.14: Arithmetic mean - geometric mean ineqaulity (AM-GM Inequality)

If x1, .., xn ⩾ 0 (real) numbers, then
x1 + ... + xn

n
⩾ n

√
x1 ⋅ ... ⋅ xn

Proof. For n = 2, this is

x1 + x2
2

⩾
√
x1x2

⇔x1 + x2 ⩾ 2
√
x1x2

⇔x1 − 2
√
x1x2 + x2 ⩾ 0

⇔ (
√
x1 −

√
x2)

2 ⩾ 0

Induction Hypothesis: Suppose it is true when n = 2k

13
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Induction Step: We show that this implies that it is true for n = 2k+1. Indeed,

x1 + ... + x2k+1
2k+1

=

x1 + ... + x2k
2k

+ x2k+1 + ...x2k+1
2k

2

⩾
2k
√
x1...x2k + 2k

√
x2k+1...x2k+1

2
Applying Induction Hypothesis: inequality holds for n = 2k

⩾
√

2k
√
x1x2...x2k−1 2k

√
x2k−1+1x2k−1+2...x2k Applying Base Case n = 2

= 2k+1√x1x2...x2k

So we know by induction on the power k in n = 2k that inequality is true for powers of 2. It suffices then to show

that if the inequality is true for n =m + 1, m ∈ N, then it is true for n =m.

Consider m numbers ⩾ 0,

x1, ..., xm

Extend this to a sequence

x1, x2, ..., xm, m
√
x1...xm

I now have m+1 elements.

Assuming the truth of the inequality for n =m + 1, we have

x1...xm + m
√
x1...xm

m + 1
⩾ m+1

√
x1...xm m

√
x1...xm = m

√
x1...xm

Algebraic manipulation gives

x1 + ... + xm + m
√
x1...xm ⩾ (m + 1) m

√
x1...xm Ô⇒ x1 + ... + xm

m
⩾ m

√
x1...xm

14
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Chapter 3

Week 3: Binomial Coefficient

3.1 Comment on Problem 2

Problem 5: Problem 2 on homework

n

∑
k=1

k ⋅ 3k = 3

4
((2n − 1) ⋅ 3n + 1)

n

∑
k=1

k ⋅ xk = x + 2x2 + ... + nxn

Solution

Consider
n

∑
k=1

xk = x
n+1 − 1

x − 1

Differentiating both sides to x, we obtain

1 + 2x + 3x2 + .. + nxn−1 = (n + 1)xn

x − 1
− x

n+1 − 1

(x − 1)2

Multiplying by x, we obtain

n

∑
k=1

k ⋅ xk = x
⎛
⎝
(n + 1)xn

x − 1
−

(xn+1 − 1)
(x − 1)2

⎞
⎠

3.2 Binomial Coefficient

Definition 3.2.1: Binomial Coefficient

Take 0 ⩽ k ⩽ n integers, and define

(n
k
) = #{k- element subsets of an n element set}

15
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Example 3.2.2. Take the set containing {Frank,Casey,Emerson,Kamilah}
There are 6 pairs: {F,C} ,{F,E} ,{F,K} ,{C,E} ,{C,K} ,{E,K}
The first person may be chosen in 4, and the second person may be chosen in 3.

The answer is 4⋅3
2
= 6. (Division by two because pairs were counted twice)

Lemma 3.2.2.1

(n
k
) = n!

k! (n − k)!

Example 3.2.3.

(4
2
) = 4!

2! (4 − 2)!
= 6

Proof. The first person may be chosen in n ways.

The second person in n − 1 ways.

The kth element in (n − k + 1) ways.

So the number of ordered k-element subset is n (n − 1) , ..., (n − k + 1)
The ordering should be removed. So far each k-element subset is counted k!.

Therefore,

(n
k
) = n (n − 1) ... (n − k + 1)

k!

= [n (n − 1) ... (n − k + 1)] [(n − k) (n − k − 1) ...1]
k! [(n − k) (n − k − 1) ...1]

= n!

k! (n − k)!

Example 3.2.4. Suppose there are 100 employees. In how many ways can we create groups with exactly 4

members?

Solution

(100
4

) = 100!

4!96!
= 100 ⋅ 99 ⋅ 98 ⋅ 97

24

Lemma 3.2.4.1

k! always divides the product of any k consecutive integers.

16
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Proof. (1) We start with the situation where the largest number among the k consecutive numbers is n ⩽ k:

The product of these k consecutive numbers with largest number n would be:

n (n − 1) (n − 2) ... (n − k + 1)

(n
k
) = n (n − 1) ... (n − k + 1)

k!

is an integer because it is counting the number of k-element subsets of an n-element set

∴ k! ∣ n (n − 1) ... (n − k + 1)

(2) Another situation is that the sequence of consecutive numbers contains 0 :

The statement is obviously true, k! ∣ 0

(3) If they are all negative:

Then up to a sign, we can reduce it to the first situation.

Note. n does not have to be larger than k, because things like

(−2) (−3) (−4) = (−1)3 (2 ⋅ 3 ⋅ 4)

Theorem 3.2.5: Newton’s Binomial Theorem

Suppose n ∈ N, a, b variables

(a + b)n =
n

∑
k=0

(n
k
)akbn−k

Example 3.2.6.

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

Proof.

(a + b)n = (a + b) (a + b) ... (a + b) There are n times

If I chose k of the brackets and have a coming from it, then the other n − k breakers contribute b.

The number of ways of choosing k of the (a + b) terms is (n
k
).

Also, we could have k ∈ {0, ..., n} a’s, thus, the sum is from k = 0 to k = n.

So

(a + b)n =
n

∑
k=0

(n
k
)akbn−k

17
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3.3 Identities regarding binomial coefficients

Property 3.3.1

(n
0
) + (n

1
) + ... + (n

n
) = 2n

Proof.

n

∑
k=0

(n
k
) =

n

∑
k=0

(n
k
) ⋅ 1k ⋅ 1n−k

= (1 + 1)n (Newton’s BT)

= 2n

Combinatorial Argument:

• This identity is counting the number of subsets (including the empty subset) of a set with n elements. Each

element is either in the subset or not, a state with two possibilities. Therefore, the number of subsets is 2n,

which is the right hand side of the identity.

• On the other hand, we could count subsets of size k and then sum over all possible sizes k. For each such k,

there are (n
k
) subsets of size k. Summing over all such possible k, we obtain the total number of subsets of

various sizes of an n-element set, which is the left hand side of the identity.

Property 3.3.2

When a = −1, b = 1

0 = ((−1) + 1)n

=
n

∑
k=0

(n
k
) (−1)k ⋅ 1n−k

= (n
0
) − (n

1
) + (n

2
) − ... + (−1)(n) (n

n
)

Property 3.3.3

(n
k
) = ( n

n − k
) for 0 ⩽ k ⩽ n

18
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Proof.

( n

n − k
) = n!

(n − k)! (n − (n − k))!

= n!

(n − k)!k!

= (n
k
)

Combinatorial Argument: Whenever you choose a k-element subset of an n-element set, the complement is an

(n − k)-element subset of the n-element set.

Property 3.3.4

For 1 ⩽ k ⩽ n,

(n
k
) = n

k
(n − 1

k − 1
)

Problem 6

Show this algebraically.

Proof. The following is a combinatorial proof. Rewrite the identity in the form

k(n
k
) = n(n − 1

k − 1
)

Let’s count something in two different ways.

Consider pairs (A,x) , where A is a subset of size k and x ∈ A (of an n-element set).

We can count the number of such subsets by first selecting A in (n
k
) and choosing x ∈ A in k ways. There are

k(n
k
) such pairs.

Another way of counting such pairs is selecting x ∈ {1, ..., n} in n ways and then choosing the other k−1 elements

to form a subset A of size k. There are n(n − 1

k − 1
) ways of doing this.

Property 3.3.5: Pascal’s Identity

For 1 ⩽ k ⩽ n, we have

(n
k
) = (n − 1

k
) + (n − 1

k − 1
)

1

1,2,1

1,3,3,1

1,4,6,4,1

Indians had this before (as early as 500s), Yang Hui triangle in China (1050s and 1250s), Khayyam (1050s)

/ Al-Karaji (950s) Persians, Pascal (1650s)

19

https://jacob-southerncity.github.io/


jacob-southerncity.github.io 3 - Identities regarding binomial coefficients Jacob Ma

Combinatorial proof: Take the set {1,2, ..., n} with n element.

Split the problem in two:

(1) Count the subsets of size k contain 1

(2) Count the subsets of size k not containing 1

number of subsets of size k not containing 1 = (n − 1

k
)

number of subsets of size k containing 1 = (n − 1

k − 1
)

Therefore,

(n
k
) = (n − 1

k
) + (n − 1

k − 1
)

The triangle could be written in

(1
0
),(1

1
)

(2
0
),(2

1
),(2

2
)

(3
0
),(3

1
),(3

2
),(3

3
)

Problem 7: Vandermonde’s Identity

For 1 ⩽ k ⩽m + n, m,n, k ∈ N

(m + n
k

) =
k

∑
i=0

(m
i
)( n

k − i
)

Proof. Suppose we want to choose k elements from a set with m + n elements.

This can be done in (m + n
k

) ways.

I will count this in different way:

Take the set {1,2,3, ...,m,m + 1, ...,m + n}
If i of the elements of the subset are among the first m, than the rest (k − i) elements have to be among

{m + 1, ...m + n}.

Ô⇒ (m
i
)( n

k − i
) ways.

Now, i could be

0,1, ..., k

So summing from i = 0 to i = k, we obtain
k

∑
i=0

(m
i
)( n

k − i
)

Proof. Skech of alg. proof

Note that (m + n
k

) is the coefficient of xk on (1 + x)m+n =
m+n

∑
i=0

(m + n
i

)xi

20
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On the other hand,

(1 + x)m+n = (1 + x)m (1 + x)n

= (
m

∑
i=0

(m
i
)xi)

⎛
⎝

n

∑
j=0

(n
j
)xj

⎞
⎠

Newton’s Binomial Theorem applied twice

=
m+n

∑
l=0

⎛
⎝ ∑i+j=l

(m
i
)(n
j
)xl

⎞
⎠

=
m+n

∑
l=0

(
l

∑
i=0

(m
i
)( n

l − i
))xl

Coefficient of xk is exactly
k

∑
i=0

(m
i
)( n

k − i
)

Corollary 3.3.6

When m = k = n, we have

(2n
n

) =
n

∑
i=0

(n
i
)( n

n − i
)

=
n

∑
i=0

(n
i
)
2

= (n
0
)
2

+ (n
1
)
2

+ ... + (n
n
)
2

Problem 8

n

∑
k=1

k2(n
k
) =?

Solution

Suppose we have n people. If we choose k of them in (n
k
) ways, the King can be choosen in k ways, and the

prime minister also in k ways. There are k2(n
k
) ways of doing all this.

Since k can be any of 1,2, ..., n, we have a total of ∑nk=1 k2(
n
k
) ways of doing this.

Let’s count this is a different way.

(1) Case 1: King = PM.

Choose this person in n ways, and then choose a subset of the other n − 1 people in 2n−1 ways.

So when King = President, we have n2n−1 communities.

(2) Case 2: King ≠ PM

In this situation, we choose the King in n ways, and the PM in n − 1 ways.

Then we choose the citizens in 2n−2 ways.
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All this can be done in n (n − 1)2n−2 ways.

Thus,
n

∑
k=1

k2(n
k
) = n2n−1 + n (n − 1)2n−2

Proof. Sketch of alg. proof.

The idea is similar to the calculus computation of

n

∑
k=1

k ⋅ xk

Consider
n

∑
k=0

(n
k
)xk = (1 + x)n

differentiating once, we obtain
n

∑
k=0

k(n
k
)xk−1 = n (1 + x)n−1

Multiply by x to get
n

∑
k=0

k(n
k
)xk = nx (1 + x)n−1

Differentiating again, we get

n

∑
k=0

k2(n
k
)xk−1 = n [(1 + x)n−1 + (n − 1)x (1 + x)n−2]

Set x = 1 to get the result.

Problem 9

Show that
n

∑
k=0

(n + k
k

) 1

2k
= 2n

In other words
n

∑
k=0

(n + k
k

) ⋅ 1

2n+k
= 1

Proof. We induct on n ⩾ 0.

If n = 0, then
0

∑
k=0

(0 + k
k

) 1

2k
= (0

0
) = 0!

0!0!
= 1

and 20 = 1 Suppose it is true for n. We show it for n + 1. Let

f (n) ∶=
n

∑
k=0

(n + k
k

) 1

2k

22
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Then

f (n + 1) =
n+1

∑
k=0

(n + 1 + k
k

) 1

2k

= 1 +
n

∑
k=1

[(n + k
k

) + (n + k
k − 1

)] 1

2k
+ (2n + 2

n + 1
) 1

2n+1
Pascal’s Identity

= 1 +
n

∑
k=1

(n + k
k

) 1

2k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f(n)

+
n

∑
k=1

(n + k
k − 1

) 1

2k
+ (2n + 2

n + 1
) 1

2n+1

= f (n) +
n

∑
k=1

(n + k
k − 1

) 1

2k
+ (2n + 2

n + 1
) 1

2n+1

Do a change of variables, let i = k − 1

= f (n) + 1

2
(2n + 2

n + 1
) 1

2n
+ 1

2

n−1

∑
i=0

(n + 1 + i
i

) 1

2i
Pascal’s Identity on the second term

= f (n) + 1

2

n−1

∑
i=0

(n + 1 + i
i

) 1

2n
+ 1

2
[(2n + 1

n
) 1

2n
+ (2n + 1

n + 1
) 1

2n
]

We know ((n + 1) + n
n + 1

) 1

2n
= (n + 1 + (n + 1)

n + 1
) 1

2n+1
⇔ (2n + 1

n
) = (2n + 2

n + 1
)1
2

Applying (n
k
) = n

k
(n − 1

k − 1
)

= f (n) + 1

2

n+1

∑
i=0

(n + 1 + i
i

) 1

2i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f(n+1)

= f (n) + 1

2
f(n + 1)

We have shown that

f (n + 1) = f (n) + 1

2
f (n + 1) Ô⇒ f (n + 1) = 2f (n)

By assumption, f (n) = 2n Ô⇒ f (n + 1) = 2n+1
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Week 4: Division Algorithm; Divisibility

4.1 Division algorithm

Theorem 4.1.1

Suppose a, b ∈ Z, b > 0. Then there are unique integers q and r such that

a = bq + r, 0 ⩽ r < b

Example 4.1.2. Suppose b = 4. Then this is saying that given a ∈ Z, it can be uniquely written as

a = 4q + r, where r ∈ {0,1,2,3}

Proof. We use the Well Ordering Principle. Consider the set

S ∶= {a − bx ∣ a − bx ⩾ 0, x ∈ Z}

S ≠ ∅ because if x = −∣a∣, we obtain

a − b (−∣a∣) = a + b∣a∣ ⩾ a + ∣a∣ ⩾ 0

By the well ordering principle, there is a q ∈ Z and r ∈ Z such that

r = a − bq ⩾ 0

and r is minimal.

Lemma 4.1.2.1

0 ⩽ r < b

Every element in S is ⩾ 0, and r ∈ S Ô⇒ r ⩾ 0.

Assume to the contrary that r ⩾ b.
Then take x = q + 1 Ô⇒

a − b (q + 1) = (a − bq) − b = r − b ⩾ 0.
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However, this would imply that 0 ⩽ r − b ∈ S.
But r − b < r, contradicting the minimality of r in S.

This means that we have found q, r ∈ Z, 0 ⩽ r < b such that a = bq + r.

Lemma 4.1.2.2

q, r ∈ Z such that a = bq + r, 0 ⩽ r < b must be unique.

Suppose that we have another pair q1, r1 ∈ Z such that

a = bq1 + r1, 0 ⩽ r < b

In order to show uniqueness, it suffices to show that

q1 = q and r1 = r

Consider

a = bq + r (1)

a = bq1 + r1 (2)

(1) − (2) :

0 = b (q − q1) + (r − r1) Ô⇒ r1 − r = b (q − q1)

Take absolute values

Ô⇒ ∣r1 − r∣ = b∣q − q1∣ (3)

0 ⩽ r1, r < b Ô⇒ ∣r1 − r∣ < b Ô⇒ b∣q − q1∣ < b Ô⇒ 0 ⩽ ∣q − q1∣ < 1

However, q, q1 ∈ Z Ô⇒ ∣q − q1∣ ∈ Z.
Therefore, ∣q − q1∣ = 0 Ô⇒ q1 = q
This also implies, by (3), that

∣r − r1∣ = b∣q − q1∣ = 0 Ô⇒ r1 = r.

4.2 Application of Division Algorithm

Problem 10

What are the possible remainder when a perfect square is divided by 3?

Solution

Suppose our perfect square is n2, n ∈ Z.

By the division algorithm,

n = 3k or 3k + 1 3k + 2 for some k ∈ Z
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(1) n = 3k :

Then n2 = 9k2 divisible by 3 Ô⇒ remainder = 0.

(2) n = 3k + 1 :

Then

n2 = 9k2 + 6 + 1

= 3 (3k2 + 2k) + 1

Ô⇒ remainder = 1.

(3) n = 3k + 2 :

Then

n2 = 9k2 + 12k + 4

= 3 (3k2 + 4k + 1) + 1 Ô⇒ remainder = 1

Thus, only 0 and 1 are possible remainders.

Problem 11

What are the possible remainders when a perfect square is divided by 4?

Solution

We get a rough sense of the answer by writing out perfect square from 0 to 3, find only 0 and 1 are possible

remainders. Below is the formal reasoning:

Suppose n2, n ∈ Z, is our perfect square. By the division algorithm, n = 2k or n = 2k + 1, k ∈ Z.

(1) n = 2k (even):

Then n2 = 4k2 is divisible by 4.

(2) n = 2k + 1 (odd):

n2 = 4k2 + 4k + 1

= 4k (k + 1) + 1

Ô⇒ remainder = 1
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Problem 12

When an odd perfect square is divided by 8, the remainder is always 1.

Problem 13

Show that no number in the (infinite) sequence

11,111,1111,11111,⋯

is a perfect square.

Proof. All numbers in the sequence have a remainder of 3 when divided by 4.

11,1111 = 100 + 11,1111 = 100 ∗ 11 + 11,⋯

However, the possible remainders of a perfect square divided by 4 are only 0 and 1.

Theorem 4.2.1: Fermat

If p is an odd prime, then it can be written as a sum of two perfect squares if and only if it has remainder 1

when divided by 4.

Full proof will come much later, but we will show the easy part:

Proposition 4.2.2

If we have an odd number, that is a sum of two perfect squares, then it must have a remainder of 1 when

divide by 4.

Proof. Suppose n ∈ Z is odd and n = a2 + b2 for some a, b ∈ Z.

a2, b2 are perfect squares, and so only possible remainders when divided by 4 are 0 and 1.

Ô⇒ only possible remainder of n when divided by 4 are 0 + 0,0 + 1,1 + 0,and, 1 + 1, in other words, 0,1,2.

Since n is odd, 0 and 2 are not possible.

The conclusion follows.

4.3 Divisibility

Definition 4.3.1: a ∣ b

Suppose a, b ∈ Z. We say that a divides b, and write a ∣ b, if there is an integer c such that b = ac.
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Example 4.3.2.

1 ∣ n,n = 1 ⋅ n

n ∣ n,n = n ⋅ 1

3 ∣ 6,10 ∣ 20

3 ∤ 2

3 ∤ 5

Definition 4.3.3: Greatest Common Divisor (gcd)

Suppose a, b ∈ Z. Then a positive integer d is called the greatest common divisor (gcd) of a and b if

(1) d ∣ a and d ∣ b

(2) c ∈ N such that c ∣ a and c ∣ b Ô⇒ c ⩽ d

Example 4.3.4.

(1) gcd (4,6) = 2

4 has divisors 1,2,4.

6 has divisors 1,2,3,6

(2) gcd (−5,5) = 5

Positive division of −5 ∶ 1,5

5 ∶ 1,5

Problem 14

gcd (2016! + 1,2017! + 1) =?
We will use the following fact:

(d ∣ a, d ∣ b)⇔ (d ∣ a, d ∣ b − a)
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Solution

gcd (2016! + 1,2017! + 1) = gcd (2016! + 1, (2017! + 1) − 2017 (2016! + 1)) Applying the fact given above

= gcd (2016! + 1, (2017! + 1) − (2017!) − 2017)

= gcd (2016! + 1,−2016)

= gcd ((2016! + 1) − (2015!) (2016) ,−2016)

= gcd (1,−2016)

= 1

Problem 15: Exercise

If Fn are the Fibonacci numbers, then gcd (Fn, Fn+1) = 1

gcd (Fm, Fn) = Fgcd (m,n)

Proposition 4.3.5

Suppose k, a, b ∈ Z. Then for d ∈ N,

(d ∣ a, d ∣ b)⇔ (d ∣ a, d ∣ b − ka)

Ô⇒ {d ∈ N ∶ d ∣ a, d ∣ b} = {d ∈ N ∶ d ∣ a, d ∣ b − ka}

Ô⇒ max{d ∈ N ∶ d ∣ a, d ∣ b} =max{d ∈ N ∶ d ∣ a, d ∣ b − ka}

gcd (a, b) = gcd (a, b − ka)

Recall that the Fibonacci sequence is recursively defined as F0 = 1, F1 = 1, and

Fn+1 = Fn + Fn−1 for n ⩾ 1

We have

1,1,2,3,5,8,13,21,34,55, ...

Problem 16

Show that for every n,

gcd (Fn, Fn+1) = 1

Proof. We use induction on n.

Base case: For n = 0, we have

gcd (F0, F1) = gcd (1,1) = 1

Induction Hypothesis: Assume the statement is true for n = k.
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Induction Step: We show that this implies the validity for n = k + 1

gcd (Fk+1, Fk+2) = gcd (Fk1 , Fk+1 + Fk)

= gcd (Fk+1, (Fk+1 + Fk) − Fk+1) Using gcd (a, b) = gcd (a, b − a)

= gcd (Fk+1, Fk)

By the inductive assumption, this latter quantity is 1.

The conclusion follows induction.

4.4 Basic Properties of Divisibility

Theorem 4.4.1

(1)

n ∣ n,1 ∣ n,n ∣ 0

(2)

a ∣ b, b ∣ c Ô⇒ a ∣ c

(3)

a ∣ b, b ∣ a Ô⇒ a ± b

(4)

a ∣ b, b ≠ 0 Ô⇒ ∣a∣ ⩽ ∣b∣

(5)

d ∣ a, d ∣ b Ô⇒ ∀x, y ∈ Z, d ∣ ax + by

Proof. (1) Clear

(2) a ∣ b Ô⇒ There is r ∈ Z such that b = ar.

b ∣ c Ô⇒ There is s ∈ Z such that c = sb

Ô⇒ c = sb = s (ar) = (rs)a

Ô⇒ a ∣ c

(3) If one of a, b is 0, the other must also be 0. 0 ∣ 0⇔ There is n ∈ Z such that 0 = n ⋅ 0

Then the conclusion is clear.
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Otherwise,

a ∣ b Ô⇒ b = ra for some r ∈ Z

b ∣ a Ô⇒ a = sb for some s ∈ Z

Ô⇒ a = rsa

Ô⇒ rs = 1

Ô⇒ r = ±1

(4) a ∣ b, b ≠ 0.

There is r ∈ Z such that

b = ra

Ô⇒ ∣b∣ = ∣r∣∣a∣

Ô⇒ ∣b∣ = ∣r∣∣a∣ ⩾ a

(5) If d ∣ a, then a = dr, r ∈ Z

If d ∣ b, then b = ds, s ∈ Z

If x, y ∈ Z, then

ax + by = drx + dsy

= d (rx + sy)

Ô⇒ d ∣ ax + by

Theorem 4.4.2: Main theorem about gcds: Bézout’s Theorem

Suppose a, b ∈ Z, at least one of which is nonzero.

Then there are integers m,n ∈ Z, such that

gcd (a, b) = am + bn

Example 4.4.3.

1 = gcd (5,2) = 5 ⋅ (1) + 2 ⋅ (−2)

Proof. We use the well-ordering principle. Consider the set

S ∶= {ax + by ∶ x, y ∈ Z, ax + by > 0}.

Assume without loss of generality that a ≠ 0.

If a > 0, then a = a ⋅ 1 + b ⋅ 0 ∈ S.

If a < 0, then ∣a∣ = a ⋅ (−1) + b ⋅ 0 ∈ S
Therefore, S ≠ ∅.
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By the well-ordering principle, S has a minimal element d > 0.

The claim is that d = gcd (a, b).
We first show that d ∣ a, d ∣ b.
Let’s show that d ∣ a.

By the division algorithm,

a = dq + r, for some q, r ∈ Z, 0 ⩽ r < d.

Since d ∈ S, there are x, y ∈ Z, such that

d = ax + by

Then

r = a − dq

= a − (ax + by) q

= a − axq − byq

= a (1 − xq) − byq

And so r is a linear combination of a and b.

If r > 0, then r would contradict the minimality of d.

This contradiction implies that r = 0 Ô⇒ d ∣ a.

The exact same argument gives d ∣ b.
Now we show that d is the greatest common divisor of a, b.

If c ∣ a, c ∣ b Ô⇒ c ∣ ax + by = d Ô⇒ ∣c∣ ⩽ ∣d∣ = d
So d = gcd (a, b).
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Week 5: GCDs; Congruence

5.1 Divisibility and gcds

Last time, we proved the Main Theorem on gcds:

Theorem 5.1.1: Main Theorem on gcds

If a, b ∈ Z, at least one of which is nonzero, then there are m,n ∈ Z such that

gcd (a, b) = am + bn

Theorem 5.1.2

Suppose a, b ∈ Z, at least on of which is nonzero. Then

gcd (a, b)Z = {ax + by ∶ x, y ∈ Z}

Note: 2Z = {⋯,−4,−2,0,2,4,⋯}

Proof. If we consider ax + by, x, y ∈ Z, then since gcd (a, b) ∣ a, b, gcd (a, b) ∣ ax + by.

Ô⇒ ax + by ∈ gcd (a, b)Z

Conversely, if we have a multiple ngcd (a, b), n ∈ Z, since

gcd (a, b) = ax + by

for some x, y ∈ Z,

ngcd (a, b) = anx + bny

This concludes the proof.
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Corollary 5.1.3:

Suppose a, b ∈ Z as before. Then gcd (a, b) = 1 if and only if there are integers x, y ∈ Z such that

1 = ax + by

Proof. If gcd (a, b) = 1, then the main theorem on gcds, there are x, y ∈ Z such that

1 = gcd (a, b) = ax + by

If ax + by = 1, then since gcd (a, b) ∣ a, b, gcd (a, b) ∣ ax + by = 1 Ô⇒ gcd (a, b) = 1

Proposition 5.1.4

Suppose a ∣ bc and gcd (a, b) = 1. Then a ∣ c.

Example 5.1.5.

4 ∣ 3 ⋅ 4

Proof. Since gcd (a, b) = 1, there are integers x, y ∈ Z such that

ax + by = 1. (∗)

Multiply both sides of (∗) by c to get

acx + bcy = c

Note that a ∣ ac and we are given a ∣ bc. Therefore,

a ∣ (ac)x + (bc) y = c

Problem 17: Homework Problem

If p is a prime and 1 ⩽ k ⩽ p − 1, then p ∣ (p
k
).

Solution

Z ∈ (p
k
) = p (p − 1)⋯ (p − k + 1)

k!

Ô⇒ k! ∣ p (p − 1)⋯ (p − k + 1)

Since gcd (k!, p) = 1, k! ∣ (p − 1) (p − 2)⋯ (p − k + 1)
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Proposition 5.1.6

Suppose a, b ∈ Z with gcd (a, b) = 1. If a ∣ c, b ∣ c, then

ab ∣ c.

Example 5.1.7.

2 ∣ n

3 ∣ n

Ô⇒ 6 = 2 ⋅ 3 ∣ n

Proof. Since gcd (a, b) = 1, we know by the main theorem on gcds, that there are x, y ∈ Z, such that

ax + by = 1.

Multiply by c to get

acx + bcy = c

Since b ∣ c, ab ∣ ac.
(c
b
∈ Z Ô⇒ ac

ab
= c
b
∈ Z)

By the same argument, a ∣ c Ô⇒ ab ∣ bc.
We conclude that

ab ∣ acx + bcy = c

Problem 18

Show that

21x2 − 7y2 = 9

has no integer solutions.
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−8 −6 −4 −2 2 4 6 8

−5

5

Figure 5.1: 21x2 − 7y2 = 9

Solution

Since 3 ∣ 9 and 3 ∣ 21x2, 3 ∣ 7y2. Since gcd (3,7) = 1,

3 ∣ y2 = y ⋅ y Ô⇒ 3 ∣ y

Ô⇒ y = 3y1, for some y1 ∈ Z

Therefore,

21x2 − 7 (3y1)2 = 9

⇔21x2 − 7 ⋅ 3 ⋅ 3y21 = 9

⇔7x2 − 21y21 = 3

Since 3 ∣ 3 and 3 ∣ 21y2, we must have 3 ∣ 7x2. Again , this implies that 3 ∣ x Ô⇒ x = 3x1, for some x1 ∈ Z

7 (3x1)2 − 21y21 = 3

⇔21x21 − 7y21 = 1

⇔21x21 − 6y21 − y21 = 1

⇔ (21x21 − 6y21 − 3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

divisible by 3

+2 = y21

This implies that y21 has remainder 2 when divided by 3.

However, no such perfect square exists.
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Problem 19

Show that

x2 + y2 + z2 = 2xyz

has no integer solutions except for x = y = z = 0.

Solution: Sketch

Let k ⩾ 0 one the largest power of 2 such that 2k ∣ x, y, z. Write

x = 2kx1, y = 2ky1, z = 2kz1

Then x21 + y21 + z21 = 2k+1x1y1z1.

You can conclude that exactly one of x1, y1, z1 is even, say x1.

This implies that

y21 + z21 = 2k+1x1y1z1 − x21 Note that 2 ∣ x1

Ô⇒ 4 ∣ y21 + z21

Thus, there is a contradiction that y1 z1 are odd, thus y21 + z21 ≡ 1 + 1 ≡ 2 mod 4.

5.2 Gcds and Congruences

Definition 5.2.1: Congruence

We say that a, b ∈ Z are congruent modulo (or mod) n ∈ N, and write a ≡ b (mod n), if n ∣ a − b.

Example 5.2.2.

−1 ≡ 2 (mod 3)

7 ≡ 3 (mod 4)

3 ≡ 1 (mod 2)

11 ≡ 2 (mod 9)

If a is odd, then a2 ≡ 1 (mod 8).
If a ∈ Z, then a2 ≡ 0 or 1 (mod 4).
If a ∈ Z, then a2 ≡ 0 or 1 (mod 3).

Problem 20

Are there integer solutions to 21x2 − 7y2 = 9
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Solution

See the solution back to Problem 18.

The point of the solution was that, in the notation of the solution to problem 18, we ended up with y21 ≡ −1 =
2 mod 3, which is impossible.

Theorem 5.2.3

(1) If a ≡ b (mod n) and c ≡ d (mod n), then a + c ≡ b + d (mod n).

(2) If a ≡ b (mod n) and c ≡ d (mod n), then ac ≡ bd (mod n).

Proof. Since a ≡ b (mod n), n ∣ a − b Ô⇒ there exists r ∈ Z such that a − b = nr Ô⇒ a = b + nr
Similarly, there is s ∈ Z such that c = d + ns.
Therefore,

a + c = (b + nr) + (d + ns)

= (b + d) + n (r + s)

Ô⇒ n ∣ (a + c) − (b + d)

⇔ a + c ≡ b + d (mod n)

This concludes the proof of (1).

ac = (b + nr) (d + ns)

= bd + nbs + ndr + n2rs

= bd + n (bs + dr + nrs)

Ô⇒ n ∣ ac − bd

⇔ ac ≡ bd (mod n)

Corollary 5.2.4

Suppose P ∈ Z [X] (= {a0 + a1X +⋯ + akXk ∣ k ⩾ 0, k ∈ Z, ai ∈ Z for every i} = polynomials with Z coeff .)

Then a ≡ b (mod n) Ô⇒ P (a) ≡ P (b) (mod n).

Proof. Suppose

P (X) = a0 + a1X +⋯ + akXk, with ai ∈ Z

Then, a ≡ b (mod n) Ô⇒ aj ≡ bj (mod n) for any j ⩾ 0.

Thus , for every j ⩾ 0, aj ⋅ aj ≡ aj ⋅ bj (mod n) Ô⇒ P (a) ≡ P (b) (mod n).
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Proposition 5.2.5

If a ∈ Z, then a2 ≡ 0 or 1 (mod 3).

Proof. by the division algorithm,

a ≡ 0,1,2 (mod 3)

Ô⇒ a2 ≡ 02,12,22 (mod 3)

Proposition 5.2.6

If a ∈ Z, then a2 ≡ 0 or 1 (mod 4).

Proof. By the division algorithm

a ≡ 0,1,2,3 (mod 4)

Therefore,

a2 ≡ 02,12,22,32 (mod 4)

≡ 0,1, (mod 4)

Proposition 5.2.7

If a ∈ Z is odd, then a2 ≡ 1 (mod 8).

Proof. Since a ∈ Z is odd, the division algorithm implies that

a ≡ 1,3,5,7 (mod 8)

Then,

a2 ≡ 12,32,52,72 (mod 8)

≡ 1 (mod 8)

Problem 21

What are all pairs of prime numbers (p, q) such that

p = a
3 + a
2

, q = a
3 − a
2

for some a ∈ Z
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Solution

If it is easy to see that this is equivalent to finding pairs of prime numbers (p − q)3 = p + q.

(p − q)3 = ((p + q) − 2q)3

≡ (0 − 2q)3 (mod p + q)

≡ −8q3 (mod p + q)

Because (p − q)3 = p + q, thus p + q ≡ 0 (mod p + q) Ô⇒ p + q ∣ 8q3.

And we know

p + q = (p − q) + 2q

≡ 2q (mod p − q)

and because p + q = (p − q)3 ≡ 0 (mod p − q), thus p − q ∣ 2q
p ≠ q, and p, q are primes Ô⇒ gcd (p, q) = 1 .

Then,

gcd (p − q, q) = gcd ((p − q) + q, q)

= gcd (p, q)

= 1

Using (a ∣ bc,gcd (a, b) = 1 Ô⇒ a ∣ c), we obtain from p − q ∣ 2q that p − q ∣ 2.

By a similar argument, (It suffies to show gcd (p + q, q) = 1.)

gcd (p + q, q3) = 1.

Combining with p + q ∣ 8q3, we obtain p + q ∣ 8.

From p − q ∣ 2 and p + q ∣ 8, we obtain that (p, q) = (5,3).

Proposition 5.2.8

gcd (a, b) = d Ô⇒ gcd(a
d
,
b

d
) = 1

Proof. There are integers x, y ∈ Z such that

ax + by = d

Ô⇒ (a
d
)x + ( b

d
) y = 1

Ô⇒ gcd(a
d
,
b

d
) = 1
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5.3 Gcds of more than two variables

Definition 5.3.1: Gcd of more than two variables

Suppose a1, ..., an are integers, at lead one of which is nonzero. Then the gcd of a1, ..., an written

gcd (a1, ..., an) is the largest natural number d, such that.

(1) d ∣ a1, ..., d ∣ an

(2) if c ∣ a, ..., c ∣ an, then c ⩽ d

Problem 22

gcd (2002 + 2,20222 + 2,20023 + 2,⋯) =?

Solution

Let d = gcd (2002 + 2,20022 + 2,20023 + 2,⋯). Then

d ∣ 2002 + 2,20022 + 2 Ô⇒ d ∣ gcd (2002 + 2,20022 + 2)

Note that

20022 + 2 = 2002 (2000 + 2) + 2

= 2000 (2002 + 2) + 6

This implies that

gcd (2002 + 2,20022 + 2) = gcd (2002 + 2,6)

= gcd (2004,6)

= 6

Therefore d ∣ 6. If we show that 6 ∣ 2002k + 2 for every k ⩾ 1 then we would be done.

The claim is that 3 ∣ 2002k + 2

2002k + 2 ≡ 1k + 2

= 1 + 2

= 3

≡ 0 (mod 3)

We also know that 2002 + 2 ≡ 0k + 0 ≡ 0 (mod 2).
We conclude that 6 ∣ 2022k + 2 for every k ⩾ 1.
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Proposition 5.3.2

A natural number is divisible by 3 (or 9) if and only if its sum of digits is divisible by 3.

Proof. Suppose n is a natural number with decimal expression

n = (a0,⋯, ad)10 = a0 + a1 ⋅ 10 + a2 ⋅ 102 +⋯ + ad ⋅ 10d,where 0 ⩽ a0,⋯, ad ⩽ 9

n = a0 + a1 ⋅ 10 + a2 ⋅ 102 +⋯ + ad ⋅ 10d

≡ a0 + a1 ⋅ 1 + a2 ⋅ 12 +⋯ + ad ⋅ 1d (mod 9)

= a0 + a1 +⋯ + ad (mod 9)
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Chapter 6

Week 6: Least Common Multiple (lcm),

Euclidean Algorithm, Unique Prime

Factorization

6.1 Least Common Multiple (lcm)

Definition 6.1.1: Least Common Multiple (lcm)

Suppose a, b ∈ Z. Then the least common multiple of a and b, written lcm(a, b), i s a positive integer such

that

(1) a ∣ d and b ∣ d

(2) if a ∣ c and b ∣ c where c ≠ 0, then c ⩾ d

Example 6.1.2.

lcm(2,3) = 6

lcm(4,6) = 12

Theorem 6.1.3

gcd (a, b) ⋅ lcm(a, b) = ab

In other words,

lcm(a, b) = ab

gcd (a, b)
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Example 6.1.4.

gcd (a, b) = 1⇔ lcm(a, b) = ab

lcm(4,6) = 4 ⋅ 6
gcd (4,6)

= 4 ⋅ 6
2

= 12

6.2 cm and gcd, Euclidean algorithm

Theorem 6.2.1: lcm and gcd

For any a, b ∈ N,

lcm(a, b) = ab

gcd(a, b)

Proof. Let d = gcd(a, b), and let

m = ab
d

Note that

m = a( b
d
) and d ∣ b

Therefore, a ∣m.

Similarly, b ∣m.

Therefore, m is a common multiple of both a and b.

We now show that m is the least common multiple.

Suppose c is a nonzero common multiple of a and b.

Consider

c

m
= c

(ab
d
)

= cd
ab
.

By Bézout’s theorem, there are integers x, y s.t.

d = ax + by.

(Note: Bézout’s theorem was an existence result, not a constructive one.)

Consequently,

c

m
= c(ax + by)

ab

= c
b
x + c

a
y

c is a common multiple of a and b, i.e. a, b ∣ c Ô⇒ c
b
x + c

a
y ∈ Z

We conclude that m ∣ c c≠0Ô⇒ m ≤ c. Therefore,

m = lcm(a, b).

The conclusion follows.
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Corollary 6.2.2

Suppose a, b ∈ N. Then

gcd(a, b) = 1⇔ lcm(a, b) = ab

Example 6.2.3.

lcm(4,5) = 4 ⋅ 5 = 20

lcm(6,4) = 4 ⋅ 6
gcd(4,6)

= 4 ⋅ 6
2

= 12.

6.3 Euclidean algorithm

Theorem 6.3.1: Euclidean algorithm

The basis of the Euclidean algorithm is the division algorithm.

Theorem 6.3.2: Division algorithm.

Suppose a, b ∈ N. Then there are unique integers q and r s.t.

a = bq + r

and

0 ≤ r < b.

Example 6.3.3. If b = 4, then any a ∈ N is uniquely written as

a = 4q + r,0 ≤ r < 4

Suppose a, b ∈ N. Then if

a = bq1 + r1,0 ≤ r1 < b,

then

gcd(a, b) = gcd(bq1 + r1, b)

= gcd((bq1 + r1) − bq1, b)

= gcd(b, r1)
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Now repeating the process, as follows:

b = q1r1 + r2, 0 ≤ r2 < r1

r1 = q2r2 + r3, 0 ≤ r3 < r2

⋮

rn−1 = qnrn + rn+1, 0 ≤ rn+1 < rn

rn = qn+1rn+1 + 0

Therefore,

gcd(a, b) = gcd(b, r1)

= gcd(r1, r2)

⋮

= gcd(rn+1,0)

= rn+1

Note that for any n ∈ N,

gcd(n,0) = n.

Example 6.3.4: gcd(20,15) =?. Using the Euclidean algorithm, we write

20 = 1 ⋅ 15 + 5

15 = 3 ⋅ 5 + 0

Thus,

gcd(20,15) = 5.

Example 6.3.5: (from textbook).

gcd(12378,3054) =?

12378 = 4 ⋅ 3054 + 162

3054 = 18 ⋅ 162 + 138

162 = 1 ⋅ 138 + 24

138 = 5 ⋅ 24 + 18

24 = 1 ⋅ 18 + 6

18 = 3 ⋅ 6 + 0

Therefore,

gcd(12378,3054) = 6.
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If we want to find x, y, s.t.

12378x + 3054y = 6.

We do the following process:

6 = 24 − 1 ⋅ 18

= 24 − 1 ⋅ (138 − 5 ⋅ 24)

= 6 ⋅ 24 − 1 ⋅ 138

= 6 ⋅ (162 − 1 ⋅ 138) − 1 ⋅ 138

= 6 ⋅ 162 − 7 ⋅ 138

= 6 ⋅ 162 − 7 ⋅ (3054 − 18 ⋅ 162)

= (6 + 7 ⋅ 18) − 7 ⋅ 3054

= 132 ⋅ 162 − 7 ⋅ 3054

= 132 ⋅ (12378 − 4 ⋅ 3054) − 7 ⋅ 3054

= 132 ⋅ 12378 − (132 ⋅ 4 + 7) ⋅ 3054

= 132 ⋅ 12378 − 535 ⋅ 3054

Therefore, we can take

(x, y) = (132,−535)

to get

12378x + 2054y = 6

Since gcd = 6, we obtain

lcm(12378,3054) = 12378 ⋅ 3054
6

.

Property 6.3.6

For gcd, we know the property about divisibility that

d ∣ a, d ∣ b Ô⇒ d ∣ a + kb, b Ô⇒ gcd (a, b) = gcd (a + kb, b)

For lcm, however, lcm(a, b) ≠ lcm(a, a + kb), because such property fails:

a ∣m,b ∣m /Ô⇒ a + kb ∣m.

Instead, we use

lcm(a, b) = ab

gcd(a, b)

Example 6.3.7. We have lcm(6,4) = 12, but lcm(6 − 4,4) = lcm(2,4) = 4 ≠ 12.
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Proposition 6.3.8

Suppose gcd(a, b) = 1. Then

gcd(a, b3) = 1

Proof. By Bézout’s theorem,

1 = ax + by for some x, y ∈ Z.

1 = 13 = (ax + by)3

NBT= a3x3 + 3a2x2by + 3axb2y2 + b3y3

= a(a2x3 + 3ax2by + 3xb2y2) + b3y3

Ô⇒ gcd(a, b3) = 1

Note: This is using the corollary 5.1. Suppose a, b ∈ Z as before. Then gcd (a, b) = 1 if and only if there are

integers x, y ∈ Z such that

1 = ax + by

Proposition 6.3.9

If gcd(a, b) = 1, then gcd(a2 + b2, b3) = 1.

Proof. By the previous problem, it suffices to show that gcd(a2 + b2, b) = 1. However, gcd(a2 + b2, b) = gcd((a2 +
b2) − b ⋅ b, b)
A second application of the previous problem gives

gcd(a2, b) = 1 since gcd(a, b) = 1

6.4 General Solution of gcd (a,b) = ax + by

How do we find integer solutions to

gcd (a, b) = ax + by?

The Euclidean algorithm only gave one solution.

ax + by = gcd (a, b) is a line with rational slope. Since we also have at leas one solution, we expect infinitely many

many integer solutions.

Theorem 6.4.1

Suppose a and b are as before and c ∈ Z. Then ax + by = c has an integer solution ⇔ d = gcd(a, b) ∣ c. If

(x0, y0) ∈ Z ×Z is a solution, then all solutions of ax + by = c are given by
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x = x0 − ( b
d
)t

y = y0 + (a
d
)t

, t ∈ Z

Example 6.4.2. Last class, we computed

gcd(12378,3054)

and found

(x0, y0) = (132,−535)

as a solution to

12378x + 3054y = 6

By this theorem, all solutions are

x = 132 − (3054
6

)t

y = −535 + 12378

6
t

Proof. If ax + by = c has an integer solution, then d ∣ a, d ∣ b Ô⇒ d ∣ ax + by = c.
On the other hand, suppose d ∣ c. Then c = dk for some k ∈ Z.

By Bézout’s theorem, there are integers x′, y′ s.t.

ax′ + by′ = d.

Multiplying both sides by k, we obtain

a(kx′) + b(ky′) = dk = c

Suppose (x, y) ∈ Z ×Z is a solution. Then

ax + by = c (1)

We also have

ax0 + by0 = c (2)

(1) − (2) given

a(x − x0) + b(y − y0) = c − c = 0

Ô⇒ a(x − x0) = b(y0 − y)

Divided by d to obtain

(a
d
)(x − x0) = ( b

d
)(y0 − y) (3)

gcd(a, b) = d Ô⇒ gcd(a
d
,
b

d
) = 1

From (3), we have
a

d
∣ ( b
d
)(y0 − y)
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(In general, if s ∣ uv, gcd(s, u) = 1 Ô⇒ s ∣ v)

Therefore,
a

d
∣ y0 − y

Ô⇒ there is an integer t1, s.t.

y0 − y = −
a

d
t1

Ô⇒ y = y0 +
a

d
t1

Similarly, there is an integer t2, s.t.

b

d
∣ x − x0

Ô⇒ x − x0 = −
b

d
t2

Ô⇒ x = x0 −
b

d
t2

We know that
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y0 − y = −ad t1

x − x0 = − bd t2

(a
d
)(x − x0) = ( b

d
)(y0 − y)

From this, we obtain that t1 = t2. So all solutions are of the stated form.

Note furthermore that if

x = x0 −
b

d
t

y = y0 +
a

d
t,

then

ax + by = a(x0 −
b

d
t) + b(y0 +

a

d
t)

= ax0 + by0 −
ab

d
t + ab

d
t

= c

6.5 Unique Factorization

Definition 6.5.1: Prime Numbers

A natural number p ≥ 2 is said to be prime if its only divisors are 1 and p.

Example 6.5.2.

5,7,11,13,17,19
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are prime numbers.

Definition 6.5.3: Composite

If n ≥ 2 is an integer, it is called composite if there are integers a, b ≥ 2 s.t.

n = a ⋅ b.

Example 6.5.4. 6 = 2 ⋅ 3, 10 = 2 ⋅ 5, 12 = 22 ⋅ 3

Theorem 6.5.5: Unique prime factorization

Every integer n ≥ 2 is a product of prime numbers

n = pα1

1 ⋯pαkk , (p1,⋯, pk primes)

and this decomposition is unique up to rearranging the prime numbers.

Proof. We prove existence using strong induction on n ≥ 2. Clearly, n = 2 is a prime number and so this settles

the base case. Now suppose the existence part if valid for every 2 ≤ n ≤ k.

Consider n = k + 1.

We are done if k + 1 is a prime. Otherwise, k + 1 = a ⋅ b for some a, b ≥ 2.

Ô⇒ a = k + 1

b
≤ k + 1

2
≤ k

b ≤ k.

By the inductive assumption, both a and b have a prime decomposition, and so does k+1 = a ⋅b. Existence follows

from strong induction.

For uniqueness, suppose

n = pα1

1 ⋯pαkk , αi ≥ 0

= pβ1

1 ⋯pβkk , βi ≥ 0

Suppose α1 ≥ 1, and so

pα1

1 ∣ n = pα1

1 ⋯pαkk = pβ1

1 ⋯pβkk .

(Recall that if a ∣ bc and gcd(a, b) = 1 Ô⇒ a ∣ c.)
We know that gcd(pα1

1 , p2) = gcd(pα1

1 , p3) = ⋯ = gcd(pα1

1 , pk) = 1

Therefore, we obtain that

pα1

1 ∣ pβ1

1 p
max{β2−1,0}
2 ⋯pmax{βk−1,0}

k .

Repeating the process, we many eliminate all p2,⋯, pk.

Consequently,

pα1

1 ∣ pβ1

1

Ô⇒ α1 ≤ β1.
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Similarly, β1 ≤ α1.

Therefore, α1 = β1. We can similarly show that α2 = β2,⋯, αk = βk.

This concludes the proof of uniqueness.

Theorem 6.5.6: How is g.c.d related to prime factorizations

Suppose

a = pα1

1 ⋯pαkk , (αi ≥ 0)

b = pβ1

1 ⋯pβkk , (βi ≥ 0)

Then

gcd (a, b) = pmin{α1,β1}
1 ⋯pmin{αk,βk}

k

Proof. Proof sketch:

Suppose d ∣ a, b.
Then

d = pγ11 ⋯pγkk ∣pα1

1 ⋯pαkk , pβ1

1 ⋯pβkk

Ô⇒ For every i, γi ≤min{αi, βi}.

Therefore,

gcd(a, b) = pmin{α1,β1}
1 ⋯pmin{αk,βk}

k .

Example 6.5.7.

gcd(12,15) = gcd(22 ⋅ 3,3 ⋅ 5) = 2min{0,2} ⋅ 3min{1,1} ⋅ 5min{0,1} = 3

Proof. Complete proof:

Basic observation: If d ∣ n, then n = dr for some r ∈ Z.

By unique prime factorization, any prime appearing in d must also appear in n.

Furthermore, the largest power of any such prime must be at most the power of this prime appearing in n.

Now suppose that d ∣ a and d ∣ b, d, a, b ∈ N.

Then writing
a = pα1

1 ⋯pαkk
b = pβ1

1 ⋯pβkk
, pi distinct prime numbers,

then

d = pγ11 ⋯pγkk

where γi ≤ αi, βi and αi, βi ≥ 0.

Thus for every i,

γi ≤min{αi, βi}.

From this, we obtain that
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gcd(a, b) = pmin{α1,β1}
1 ⋯pmin{αk,βk}

k

By the exact same argument, if
a1 = p

α1,1

1 ⋯pα1,k

k

⋮
an = p

αn,1
1 ⋯pαn,kk

, αi,j ≥ 0, then

gcd(a1,⋯, an) = p
min{α1,1,α2,1,⋯,αn,1}
1 ⋯pmin{α1,k,α2,k,⋯,αn,k}

k

Warning. gcd(a, b, c) = 1 /Ô⇒ gcd(a, b) = 1

Example 6.5.8. gcd(2 ⋅ 3,3 ⋅ 5,5 ⋅ 2) = 1. but gcd(2 ⋅ 3,3 ⋅ 5) = 3 ≠ 1.

Theorem 6.5.9: How l.c.m is related to prime factorizations

From lcm, note the following.

If a ∣m and b ∣m, where

a = pα1

1 ⋯pαkk
b = pβ1

1 ⋯pβkk
m = pγ11 ⋯pγkk ,

then αi, βi ≤ γi, i.e. max{αi, βi} ≤ γi for every i.

From this, we obtain that

lcm(a, b) = pmax{α1,β1}
1 ⋯pmax{αk,βk}

k .

Example 6.5.10.

lcm(12,15) = lcm(22 ⋅ 3,3 ⋅ 5)

= 2max{2,0} ⋅ 3max{1,1} ⋅ 5max{0,1}

= 22 ⋅ 3 ⋅ 5

= 60

These verify 60 = lcm(12,15) = 12⋅15
gcd(12,15)

= 12⋅15
3

.
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Chapter 7

Week 7: P-adic Valuations, (Ir)rationality,

Counting Primes

7.1 P-adic Valuations

Definition 7.1.1: P-adic Valuations

For a natural number n,

vp(n) = largest power of prime p dividing n.

Example 7.1.2.

v2(12) = v2(22 ⋅ 3) = 2

v2(5) = 0

v5(52) = 2

In general, if n = pα1

1 ⋯pαkk , then vpi(n) = αi.

Proposition 7.1.3: Generalization of Unique Factorization to Rational Numbers

We can generalize unique factorization to rational numbers by the following:

Give a rational number x, write it in reduced form and then write

x = pα1

1 ⋯pαkk , αi ∈ Z.

Example 7.1.4.
15

20
= 3

4
= 3

22
= 2−2 ⋅ 3

15

20
= 3 ⋅ 5
22 ⋅ 5

= (3 ⋅ 5) ⋅ 2−2 ⋅ 5−1 = 2−2 ⋅ 3
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Definition 7.1.5

Given a prime number p, the p-adic valuation is the function

vp ∶ Q→ Z ∪ {∞}

given by sending a rational number x to the power of p appearing in x.

Note: v0 of any number is ∞.

Property 7.1.6: Properties of p-adic valuations

(a)

vp(ab) = vp(a) + vp(b)

(b)

d ∣ n⇔ for every prime p, vp(d) ≤ vp(n)

(c)

vp(a + b) ≥min{vp(a), vp(b)}

Proof. Proof of (c).
If

a = pα1

1 ⋯pαkk ,

and

b = pβ1

1 ⋯pβkk ,

assume α1 ≤ β1, then

a + b = pα1

1 (pα2

2 ⋯pαkk + pβ1−α1

1 pβ2

2 ⋯pβkk )

Ô⇒ vp1(a + b) ≥ α1 =min{α1, β1} =min{vp1(a), vp1(b)}.

Example 7.1.7.

v2(12 + 10)

=v2(22 ⋅ 3 + 2 ⋅ 5)

=v2(2(2 ⋅ 3 + 5))

≥1 =min{v2(12), v2(10).}

Example 7.1.8.

v2(2 + 6) = v2(8) = 3
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v2(2) = 1

v2(6) = 1

min{v2(2), v2(6)} = 1

Problem 23

Let a, b, c, ∈ N. Then that

lcm(a, b, c)2∣lcm(a, b) ⋅ lcm(b, c) ⋅ lcm(c, a) for any a, b, c ∈ N.

Proof. It suffices to show that for any prime p,

vp(lcm(a, b, c)2) ≤ vp(lcm(a, b) ⋅ lcm(b, c) ⋅ lcm(c, a)).

Note that

vp(lcm(a, b, c)2) = vp(lcm(a, b, c) ⋅ lcm(a, b, c))

= 2vp(lcm(a, b, c))

= 2max{vp(a), vp(b), vp(c)}

On the other hand,

vp(lcm(a, b) ⋅ lcm(b, c) ⋅ lcm(c, a)) = vp(lcm(a, b)) + vp(lcm(b, c)) + vp(lcm(c, a))

=max{vp(a), vp(b)} +max{vp(b), vp(c)} +max{vp(c), vp(a)}.

Lemma 7.1.8.1

If x, y, z ≥ 0, then

2max{x, y, z} ≤max{x, y} +max{y, z} +max{z, x}

Proof. If you permute x, y, z, the inequality does not change.

Therefore, we may assume without loss of generality that

x ≥ y ≥ z.

Then the inequality becomes

2x ≤ x + y + x

= 2x + y

⇔ y ≥ 0,

which is true.

Apply this lemma to

x = vp(a), y = vp(b), z = vp(c)

completes the proof.
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Problem 24

If a, b ∈ N s.t.

a ∣ b2, b3 ∣ a4, a5 ∣ b6,⋯

then

a = b.

Proof. We show that for any prime p,

vp(a) = vp(b).

Note that we have

a4n+1 ∣ b4n+2 and b4n+3 ∣ a4n+4

for every n.

vp(a4n+1) ≤ vp(b4n+2)

(4n + 1)vp(a) ≤ (4n + 2)vp(b)

Ô⇒ vp(a) ≤
4n + 2

4n + 1
vp(b) for every n ∈ N

Ô⇒ vp(a) ≤ ( lim
n→∞

4n + 2

4n + 1
)vp(b) = vp(b).

We can use the second divisibility to similarly obtain that vp(b) ≤ vp(a), thus we have that for every prime p,

vp(a) = vp(b).

Therefore, a = b is derived from unique prime factorization.

7.2 (Ir)rationality

Definition 7.2.1: Rational Numbers

A rational number is any element of the set

Q ∶= {a
b
∶ a, b ∈ Z, b ≠ 0}

Theorem 7.2.2

√
2 is irrational.

Proof. Assume to the contrary that
√
2 is rational, that is, there are a, b ∈ Z s.t.

√
2 = a

b
.

This implies that

2b2 = a2
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Then

v2(2b2) = v2(a2)

v2(2) + 2v2(b) = 2v2(a)

1 + 2v2(b) = 2v2(a)

The left hand side is odd while the right hand side is even.

Therefore,
√
2 is irrational.

Problem 25

Show that
√
2 +

√
3 is irrational.

Solution

Assume to the contrary that
√
2 +

√
3 = a

b
, a, b ∈ Z

Then

√
3 = a

b
−
√
2

3 = a
2

b2
− 2a

b

√
2 + 2

√
2 = b

2a
(3 − 2 − a

2

b2
)

Therefore, if
√
2 +

√
3 is rational, then

√
2 would also be rational. This is a contradiction.

Definition 7.2.3: Recollection on logx

logx ∶= ∫
x

1

1

t
dt, x ⩾ 1

2 4 6 8 10

2

4

6

8

10

Figure 7.1: f (t) = 1
t
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Definition 7.2.4: Recollection on e

e > 0 is the real number s.t.

log e = 1, i.e.∫
e

1

1

t
dt = 1

It be shown that

log(ex) = x, for any x ∈ R

Let y = ex. Take log of both sides to get

log y = log(ex) = x.

Differentiating, we get
y′

y
= 1 Ô⇒ y′ = y.

Then we can write the Taylor expansion of f(x) = ex centered at 0.

ex =
∞

∑
n=0

f (n)(0)
n!

xn

=
∞

∑
n=0

xn

n!

For x = 1

e =
∞

∑
n=0

1

n!

= 1 + 1

1!
+ 1

2!
+ 1

3!
+⋯

You can estimate that 2 < e < 3.

Theorem 7.2.5

e is irrational.

Proof. (Fourier).

Assume to the contrary that

e = a
b
, a, b ∈ N.

From 2 < e < 3, we know that e ∉ Z and so b ≥ 2.

Consider the number

S = b!(e −
b

∑
n=0

1

n!
)

S is an integer as

S = b!(a
b
−

b

∑
n=0

1

n!
)

= (b − 1)!a −
b

∑
n=0

b!

n!

On the other hand, we could show that 0 < S < 1.
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Indeed, S > 0 because

S = b!(
∞

∑
n=0

1

n!
−

b

∑
n=0

1

n!
)

= b!
∞

∑
n=b+1

1

n!
> 0

We also have S < 1 since

S = b!
∞

∑
n=b+1

1

n!

= b!( 1

(b + 1)!
+ 1

(b + 2)!
+⋯)

= 1

b + 1
+ 1

(b + 1)(b + 2)
+ 1

(b + 1)(b + 2)(b + 3)
+⋯

< 1

b + 1
+ 1

(b + 1)2
+ 1

(b + 1)3
+⋯

= 1

b + 1
( 1

1 − 1
b+1

)

= 1

b
≤ 1

2
< 1

Since there are no integers S such that 0 < S < 1, we reach a contradiction.

The conclusion follows the contradiction.

Problem 26: Open Problem

Is the Euler constant γ ∶= limn→∞ (1 + 1
2
+⋯ + 1

n
− logn) irrational? This problem has been open for a very

long time. It is a constant that appears in various places in mathematics.

Theorem 7.2.6

π is irrational.

Proof. (Hermite, variation due to N. Bourbaki)

Assume to the contrary that

π = a
b
, a, b ∈ N.

Consider

T (n) ∶= bn ∫
π

0

xn (π − x)n

n!
sinx dx

First, note that x(π − x) is positive on (0, π) and 0 only at the boundaries.

Similarly for sinx.
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−2 −1 1 2 3 4 5

−2

2

4

Figure 7.2: y = x (π − x)

−2 2 4 6

−1

−0.5

0.5

1

Figure 7.3: y = sinx

Therefore, we always have

T (n) > 0.

Now let us show that for n sufficiently large,

T (n) < 1.

In order to show this, note that

x(π − x) ≤ (π
2
)2 for 0 ≤ x ≤ π.

Therefore,

T (n) = bn ∫
π

0

xn(π − x)n

n!
sinx dx

≤ b
n

n!
∫

π

0
(π
2
)
2n

dx

=
bnπ(π

2
)2n

n!

=
π( bπ

2

4
)n

n!

n→∞→ 0

The terms are those of the convergent series expansion of πebπ
2/4 from which the convergence to 0 follows.

Choose such an n large enough to have

0 < T (n) < 1.

T (n) = ∫
π

0

bnxn(π − x)n

n!
sinx dx
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In order to reach a contradiction, we show that T (n) is an integer. For convenience, let

f(x) ∶= b
nxn(π − x)n

n!

= x
n(bπ − bx)n

n!

= x
n(a − bx)n

n!

f(x) is a polynomial of degree 2n.

Apply IBP with u = f(x), dv = sinxdx to obtain

T (n) = [−f(x) cosx]π0 + ∫
π

0
f ′(x) cosxdx.

The first term is an integer. In fact, it vanishes. By repeatedly applying integration by parts 2n + 1 times (2n + 1

times because f is a polynomial of degree 2n, and so after differentiating 2n+ 1 time it becomes 0), we can then

show that T (n) ∈ Z. In the differentiations of f , terms containing x(a − bx) as a factor vanish when evaluated

at 0 or π. Otherwise, we have differentiated one of xn or (a − bx)n at least n times, thus cancelling the n! in the

denominator. These terms will also be integers when evaluated at 0 or π.

Since we cannot have an integer T (n) such that 0 < T (n) < 1, π must be irrational.

7.3 Counting Primes

Theorem 7.3.1: The Infinitude of Primes (Euclid)

There are infinitely many primes.

Proof. Assume to the contrary that there are only finitely many primes p1,⋯, pk.

Consider

N ∶= p1,⋯, pk + 1.

N > 1, and so there is a prime number p such that p ∣ N .

Then p ∉ {p1,⋯, pk}.

Indeed,

pi ∣ p1⋯pk + 1

Ô⇒ pi ∣ 1,

a contradiction.

Therefore, p1,⋯, pk cannot be all the prime numbers. This contradiction implies that we must have infinitely

many primes.

Corollary 7.3.2

Order the primes p1 = 2 < p2 = 3 < p3 < ⋯. Then

pk+1 ≤ p1⋯pk + 1.
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Proof. By the proof of the previous theorem, there is a prime p such that

p ∣ p1⋯pk + 1,

and so p ≤ p1⋯pk + 1. Since p cannot be one of the pi, we must have p ≥ pk+1. The conclusion follows.

Definition 7.3.3: Counting of Prime Numbers

Let

π(x) ∶=#{p prime ≤ x}.

This function counts the number of primes that are at most x.

Problem 27

How does π(x) grow as x→ +∞?

Theorem 7.3.4: Prime Number Theorem(PNT)

π (x) ∼ x

logx
as x→ +∞

i.e.

lim
x→∞

π (x)
x

logx

= 1

0.2 0.4 0.6 0.8 1
⋅105

2,000

4,000

6,000

8,000

Figure 7.4: π (x) ∼ x
logx

The proof of this theorem is long and requires a serious understanding of complex analysis which is beyond the

scope of this course. However, what can we say by elementary means?

Proposition 7.3.5

pk < 22
k
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Proof. We use strong induction on k.

p1 = 2 < 22
1

p2 = 3 < 22
2

Assume it is true for 1 ≤ k ≤ n.

Using

pn+1 ≤ p1⋯pn + 1

and the inductive assumption, we have

pn+1 < 22
1

⋅ 22
2

⋯22
n

+ 1

= 22+2
2+⋯+2n + 1

= 22
n+1−2 + 1

< 22
n+1

The conclusion follows from strong induction.

Theorem 7.3.6

π(x) ≥ log(logx).

Proof. Given x ≥ 3, choose n ∈ N s.t.

ee
n−1

≤ x < ee
n

From the previous proposition,

π(22
n

) ≥ n, (0)

Then from x ≤ ee
n

we obtain that

n ≥ log(logx).

On the other hand,

π(x) ≥ π(ee
n−1

), (1)

and if n > 3, then

en−1 ≥ 2n (2)

⇔(e
2
)
n

≥ e for n > 2

Therefore, from (0), (1) and (2), we obtain for n > 2

π(x) ≥ π(e2
n

)

≥ π(22
n

)

≥ n

≥ log(logx).
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If we have n ≤ 3, then for x ≥ 5,

π(x) ⩾ π(5) = 3 ⩾ n.

The above works for such x even if n ≤ 3. We can manually check that the proposition also holds for x < 5.

The conclusion follows.

Theorem 7.3.7

∑
p prime≤n

1

p
> log(logn) − 1

2

Corollary 7.3.8

π(n) ≥ 2 log(logn) − 1

Proof. Proof of corollary assuming previous theorem.

∑
p prime≤n

1

2
> ∑
p prime≤n

1

p
≥ log(logn) − 1

2
.

And we have

∑
p prime≤n

1

2
= π(n)

2

This implies

π(n) ≥ 2 log(logn) − 1.

Definition 7.3.9: ∏

The analogue of ∑ for summation is ∏ for products.

n

∏
i=1

ai = a1a2⋯an

Proof of theorem. Consider

∏
p prime, p≤n

⎛
⎝

1

1 − 1
p

⎞
⎠

= ∏
p prime, p≤n

(1 + 1

p
+ 1

p2
+ 1

p3
+⋯)

≥
n

∑
k=1

1

k

Why? Every 1 ≤ k ≤ n has a prime factorization

k = pα1

1 pα2

2 ⋯pαee

s.t. pi ≤ k ≤ n for all i.
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Since k ≤ n, pi ≤ n. Therefore,

(1 + 1

p1
+ 1

p21
+ 1

p31
+⋯)⋯(1 + 1

pe
+ 1

p2e
+ 1

p3e
+⋯) , (3)

is a factor of

∏
p prime, p≤n

(1 + 1

p
+ 1

p2
+ 1

p3
+⋯) , (4)

Note that 1
k
= 1
p
α1
1 p

α2
2 ⋯pαee

appears as a term in the expansion of (3), and therefore also in the expansion of (4).
As a result,

∏
p prime, p≤n

⎛
⎝

1

1 − 1
p

⎞
⎠
≥

n

∑
k=1

1

k
.

In the following, p is always implicitly a prime number.

We have this chain of (in)equalities:

−∑
p≤n

log(1 − 1

p
) = log∏

p≤n

(1 − 1

p
)−1

≥ log(
n

∑
k=1

1

k
)

≥ log (∫
n

1

1

t
dt)

= log(logn)

On the other hand, it can be shown that

∑
p≤n

1

p
+ 1

2
≥ −∑

p≤n

log(1 − 1

p
), (5)

Indeed, recall the Taylor expansion

− log(1 − x) = x + x
2

2
+ x

3

3
+⋯

Using this, we obtain

−∑
p≤n

log(1 − 1

p
) = ∑

p≤n

∞

∑
k=1

1

kpk

Note that

∑
p≤n

∞

∑
k=1

1

kpk
= ∑
p≤n

1

p
+ ∑
p≤n

∞

∑
k=2

1

kpk

I will show that

∑
p≤n

∞

∑
k=2

1

kpk
< 1

2
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We have the inequalities

∑
p≤n

∞

∑
k=2

1

kpk
< ∑

p≤n

1

2p2

∞

∑
k=0

1

pk

= 1

2
∑
p≤n

1

p2
⎛
⎝

1

1 − 1
p

⎞
⎠

= 1

2
∑
p≤n

1

p(p − 1)

< 1

2

n

∑
k=2

1

k(k − 1)

= 1

2

n

∑
k=2

( 1

k − 1
− 1

k
)

= 1

2
(1 − 1

2
+ 1

2
− 1

3
+⋯ − 1

n − 1
+ 1

n − 1
− 1

n
) = 1

2
(1 − 1

n
)

< 1

2
.

This settles inequality (5).
Hence, we have

∑
p prime≤n

1

p
+ 1

2
> log(logn)

as required (move the 1
2

to the other side).

Recall that for any ε > 0,

lim
x→∞

logx

xε
= 0

In particular, for x sufficiently large, depending on ε,

logx

xε
< 1 ⇐⇒ logx < xε

Take ε = 1
2
. Then for x sufficiently large,

x

logx
≥ x

x
1
2

=
√
x.

log(logx) ≤ 1

2
logx

≤ 1

2
x

1
3 for x sufficiently large

Theorem 7.3.10

∑
p prime⩽n

1

p
> log (log (n)) − 1

2
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Corollary 7.3.11

π (n)
2

= ∑
p prime⩽n

1

2

⩾ ∑
p prime⩽n

1

p

> log (log (n)) − 1

2

Ô⇒ π (n) > 2 log (log (n)) − 1

Problem 28

Therefore, log(log(x)) is much smaller than x
logx

. This implies that our lower bound π(x) ≥ log log(x) is not

too good. Can we do better?

Solution

Let x ∈ N, and let m ∶= π(x). Write {p prime ≤ x} = {p1,⋯, pm}.

x natural number n such that 1 ≤ n ≤ x have all their prime divisors among {p1,⋯, pm}.

Given 1 ⩽ n ⩽ x, n = r2 ⋅ s, where r ∈ N, s is a product of distinct prime numbers.

Example 7.3.12.

n = 23 ⋅ 34 ⋅ 7

= (22 ⋅ 34) ⋅ 2 ⋅ 7

= (2 ⋅ 32)2 ⋅ 2 ⋅ 7

n = 113 = 112 ⋅ 11

Since 1 ≤ n ≤ x, s is a product of distinct primes chosen from

{p1,⋯, pm}

So there are 2m = 2π(x) choices for s.

On the other hand,

r2 ≤ r2s = n ≤ x

Ô⇒ r ≤
√
x.

Putting all this together, we obtain that

x ≤
√
x ⋅ 2π(x)

Consequently,
√
x ≤ 2π(x)
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Taking log, we have

1

2
logx ≤ π(x) log 2

Ô⇒ π(x) ≥ logx

2 log 2

This lower bound is better than the lower bound log(log(x)).

Problem 29

By the prime number theorem, for sufficiently large x,

0.99 < π(x)x
logx

< 1.01

Ô⇒ 0.99x

logx
< π(x) < 1.01x

logx
for x sufficiently large.

Can we prove that for say x ≥ 6 that there is a constant c > 0 s.t. π(x) ≥ cx
logx

?

Solution

Consider the function

ψ(n) = ∑
α∈N
p prime
pα≤n

log p.

e.g.

ψ(8) = log 2 + log 2 + log 2 + log 3 + log 5 + log 7

= log(23 ⋅ 3 ⋅ 5 ⋅ 7)

Exercise.

ψ(n) = log lcm(1,2,3,⋯, n)

i.e.

eψ(n) = lcm(1,2,3,⋯, n).
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Consider now the integral

∫
1

0
xn(1 − x)n dx

BT= ∫
1

0
xn

n

∑
k=0

(n
k
)(−x)k dx

=
n

∑
k=0

(−1)k(n
k
)∫

1

0
xn+k dx

=
n

∑
k=0

(−1)k(n
k
) xn+k+1

n + k + 1
∣
1

0

=
n

∑
k=0

(−1)k(n
k
) ⋅ 1

n + k + 1

Ô⇒ eψ(2n+1) ∫
1

0
xn(1 − x)n dx

=lcm(1,2,⋯,2n + 1)
n

∑
k=0

(−1)k(n
k
) 1

n + k + 1

=
n

∑
k=0

(−1)k(n
k
) lcm(1,2,⋯,2n + 1)

n + k + 1

is an integer. It is also positive! Therefore, it is a natural number, and so

eψ(2n+1) ∫
1

0
xn(1 − x)ndx ≥ 1.

On the other hand,

x(1 − x) ≤ 1

4

Ô⇒ xn(1 − x)n ≤ (1
4
)n

Therefore,

1 ≤ eψ(2n+1) ∫
1

0
xn(1 − x)ndx ≤ e

ψ(2n+1)

4n

and so,

ψ(2n + 1) ≥ 2n log 2

Suppose n ∈ N. Then choose n ∈ N s.t.

2n − 1 ≤ x < 2n + 1

Then we have

ψ(x) ≥ ψ(2n − 1)

≥ 2(n − 1) log 2

= (2n − 2) log 2

≥ (x − 3) log 2

≥ x
2
log 2

where the last inequality follows from the fact that x ≥ 6 implies that x − 3 ≥ x
2
.
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If pα ≤ x, then α log p ≤ logx Ô⇒ α ≤ logx
log p

. Therefore, for each prime p ≤ x, log p may appear at most logx
log p

times. Consequently, we have

ψ(x) = ∑
α∈N
p prime
pα≤x

log p ≤ ∑
p prime
p≤x

logx

log p
⋅ log p = π(x) logx.

From the inequality ψ(x) ≥ x
2
log 2 above and ψ(x) ≤ π(x) logx, we obtain

π(x) ≥ x log 2
2 logx

for each x ≥ 6. We have proved the following theorem.

Theorem 7.3.13

For x ≥ 6, we have

π(x) ≥ x log 2
2 logx

By the Prime Number Theorem,

lim
x→∞

π (x)
x

logx

= 1

In particular, for large enough x, we have

0.99 < π (x)
x

logx

Ô⇒ π (x) > 0.99
x

logx
for x large enough

Remark. We know that
n

∏
i=1

ai ∶= a1a2⋯an.

We have a obervation:

∏
p prime,n<p⩽2n

∣(2n
n

)

Notw that

(2n
n

) = (2n)!
(n!)2

Any prime p such that n < p ⩽ 2n does not divide the denominator while it divides the numerator.

Using the general fact that

gcd (a, b) = 1, a ∣ c, b ∣ c

Ô⇒ ab ∣ c

We obtain

∏
n<p⩽2n

p∣(2n
n

)
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This implies that

∏
n<p⩽2n

p ⩽ (2n
n

) (1)

This is using general fact that a, b ∈ N, a∣b, b ≠ 0 Ô⇒ a ⩽ b.

Using

(2n
n

) ⩽ (2n
0
) + (2n

1
) +⋯ + (2n

2n
) = (1 + 1)2n

We have

(2n
n

) ⩽ 22n (2)

Combininng (1) and (2), we obtian

∏
n<p⩽2n

p ⩽ p2n

Taking logs, we have

∑
n<p⩽2n

log p ⩽ log 22n = 2n log 2 (3)

Let’s introduce the function

θ (x) ∶= ∑
p⩽x

log p

(3) may be written as

∑
p⩽2n

log p − ∑
p⩽n

log p ⩽ 2n log 2

Ô⇒ θ (2n) − θ (n) ⩽ 2n log 2 (4)

Lemma 7.3.13.1

For every r ∈ N,

θ (2r) ⩽ 2r+1 log 2

Proof. We induct on r. If r = 1, then

θ (2) = log 2

while the RHS is 22 log 2

If we have

θ (2k) ⩽ 2k+1 log 2, (5)

then from (4) with n = 2k

θ (2k+1) ⩽ θ (2k) + 2 ⋅ 2k log 2 Applying (5)

⩽ 2k+1 log 2 + 2k+1 log 2

= 2(k+1)+1 log 2

Given x ⩾ 2, choose r ∈ N such that

2r ⩽ x < 2r+1
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From this, we obtian

θ (x) ⩽ θ (2r+1) ⩽ 2r+2 log 2

= 4 (log 2) ⋅ 2n

⩽ 4x log 2

In particular,

∑
√
x<p⩽x

log p ⩽ ∑
p⩽x

log p = θ (x) ⩽ 4x log 2 (6)

The LHS of (6) is at least

∑
√
x<p⩽x

log
√
x = (log

√
x) (π (x) − π (

√
x)) (7)

= 1

2
(logx) (π (x) − π (

√
x))

(6) combined with (7) implies that

1

2
(logx) (π (x) − π (

√
x)) ⩽ 4x log 2

π (x) − π (
√
x) ⩽ 8x log 2

logx

π (x) ⩽ 8x log 2

logx
+ π (

√
x)

⩽ 8x log 2

logx
+
√
x

When is
√
x ⩽ x log 2

logx
?

If this is to be true, we must have
logx

log 2
⩽
√
x

i.e.
√
x log 2 − logx ⩾ 0

Let

f (x) ∶=
√
x log 2 − logx

For whcih x is

f ′ (x) ⩾ 0?

f ′ (x) = log 2

2
√
x
− 1

x

f ′ (x) ⩾ 0⇔ log 2

2
√
x
⩾ 1

x

⇔
√
x ⩾ 2

log 2

⇔ x ⩾ ( 2

log 2
)
2

For x ⩾ 8.32...
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Therefore
√
x ⩽ x log 2

logx
, for x ⩾ 10

We conclude that

π (x) ⩽ 8x log 2

logx
+
√
x ⩽ 9x log 2

logx
for x ⩾ 10

Also, we can manually check that the final inequality on x between 2 and 10 for

π (x) ⩽ 9x log 2

logx

Thus it is valid for 2 ⩽ x ⩽ 10, and is valid for x ⩾ 2, .
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Chapter 8

Week 8: Fermat’s Little Theorem

8.1 Fermat’s Little Theorem

Theorem 8.1.1: Fermat’s Little Theorem

If p is a prime number and n ∈ N such that p ∤ n (i.e. gcd (p,n) = 1 ), then

np−1 ≡ 1 (mod p)

i.e.

p ∣ np−1 − 1

Example 8.1.2. Let p = 5 and n = 3. Then

35−1 ≡ 1 (mod 5)

Problem 30: Some application

What are the last digit of 31001?

Solution

We want to find 31001 (mod 10).

31001 ≡ 11001 (mod 2)

= 1 (mod 2)
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Also

31001 = 31000 ⋅ 3

= (34)250 ⋅ 3

≡ 1250 ⋅ 3 (mod 5)

≡ 3 (mod 5)

Consider the remainders of 31001 divided by 10 is one of the numbers from

0,1,2,3,4,5,6,7,8,9

r ≡ 31001 (mod 10)

Ô⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r ≡ 31001 (mod 5)

r ≡ 31001 (mod 2)

The only possible number among 0,1,⋯,9 with

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r ≡ 3 (mod 5)

r ≡ 1 (mod 2)

is 3.

Problem 31

What is the last digit of 21002?

Solution

We want to find

21002 mod 10

By Fermat’s Little Theorem,

24 ≡ 1 (mod 5)

Therefore,

21002 ≡ (24)250 ⋅ 22 ≡ 1250 ⋅ 22 ≡ 4 (mod 5)

We also have that

21002 ≡ 0 (mod 2)

You can easily check that then

21002 ≡ 4 (mod 10)
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We want to be able to find, for e.g.,

21002 mod 51.

Lemma 8.1.2.1

Suppose n ∈ N, a ∈ Z. Then

ax ≡ b (mod n)

has a solution, if and only if

d ∶= gcd (a,n) ∣ b (1)

In fact, modulo n, there are exactly d solutions.

Proof. Finding x such that

ax ≡ b (mod n)

is equivalent to solving the equation

ax − b = ny, y ∈ Z

Ô⇒ ax − ny = b (2)

This has integer solution (x, y) ∈ Z ×Z if and only if

d ∶= gcd (a,n) ∣ b

(Essentially, Bezout’s Theorem).

Recall that if (x0, y0) is a solution of (2), then all integer solutions are of the form

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x = x0 + n
d
t

y = y0 − a
d
t

, t ∈ Z

Let t range from 0 to d − 1.

We then have solutions

x0, x0 +
n

d
,x0 +

2n

d
,⋯, x0 +

(d − 1)n
d

to (1).
Why are they distinct modulo n?

Assume to the contrary that

n∣ (x0 +
in

d
) − (x0 +

jn

d
) ,

where 0 ⩽ i, j ⩽ d − 1, and i ≠ j.
Then

n∣ (i − j) n
d
.

However, note that

∣ (i − j) n
d
∣ ⩽ d − 1

d
⋅ n < n

n cannot divide a natural number less than n. This contradiction implies that they must all be distinct modulo

n.
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If

x0 +
n

d
t

is a solution, then we can use the division algorithm to write

t = qd + r,0 ⩽ r ⩽ d − 1,

from which it follows that

x0 +
n

d
t = x0 +

n

d
(qd + r) = x0 +

nr

d
+ nq.

As x0 + nr
d

is one of the d distiniguished elements above, and x0 + n
d
t ≡ x0 + nr

d
mod n, we have that modulo n

all solutions are congruent to one of the d elements.

This concludes the proof.

Corollary 8.1.3:

Suppose n ∈ N, a ∈ Z. Then

ax ≡ 1 (mod n)

has a solution if and only if

gcd (a,n) = 1.

In fact, if gcd (a,n) = 1, there is exactly one solution modulo n.
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Chapter 9

Week 9: Chinese Remainder Theorem;

Euler’s Totient Function; Euler’s Thoerem

9.1 Chinese Remainder Theorem

Theorem 9.1.1: Chinese Remainder Theorem

Suppose n1, n2,⋯, nk are natural numbers such that for every i ≠ j, gcd (ni, nj) = 1. Also, let a1,⋯, ak ∈ Z.

Then the system of congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

⋮

x ≡ ak (mod nk)

has a unique solution x modulo n1 ⋅ n2 ⋅⋯ ⋅ nk.

Proof. Why must a solution exist?

Let

N1 =
n1 ⋅⋯ ⋅ nk

n1

⋮

Nk =
n1 ⋅⋯ ⋅ nk

nk

Note that

gcd (N1, n1) = ⋯ = gcd (Nk, nk) = 1

By the corollary 8.1.3, there are

x1, . . . , xk ∈ Z

such that

N1x1 ≡ 1 (mod n),⋯,Nkxk ≡ 1 (mod nk)
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Then let

x = a1N1x1 +⋯ + akNkxk.

Note that n1∣N2,⋯,Nk. Therefore,

x ≡ a1N1x1 + 0,⋯,0
´¹¹¹¹¹¸¹¹¹¹¹¶
k−1

≡ a1 ⋅ 1

≡ a1 mod n1.

Similarly, x satisfies the other congruence conditions modulo n2,⋯, nk.

To show uniqueness of the solution modulo n1 ⋅⋯ ⋅ nk, suppose x′ and x′′ are two solutions.

Then

x′ ≡ a1 ≡ x′′ (mod n1)

⋮

x′ ≡ ak ≡ x′′ (mod nk)

Therefore

n1 ∣ x′ − x′′

⋮

nk ∣ x′ − x′′

Since for every i ≠ j, gcd (ni, nj) = 1,

n1 ⋅⋯ ⋅ nk ∣ x′ − x′′

i.e

x′ ≡ x′′ (mod n1 ⋅⋯nk).

This means that x′ and x′′ are, in fact, the same modulo n1⋯nk, as required.

Problem 32

Find all solutions to the system

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x ≡ 1 (mod 2)

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)
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Solution

Let N1 = 3 ⋅ 5, N2 = 2 ⋅ 5, N3 = 2 ⋅ 3.

Then we first find x1 such that

N1x1 ≡ 15x1 ≡ 1 (mod 2)

Note that

15x1 ≡ x1 (mod 2)

So x1 = 1 is a solution.

We also want x2 such that

N2x2 = 10x2 ≡ 1 (mod 3)

Again,

1 ≡ 10x ≡ x2 (mod 3)

and so we can take x2 = 1.

Finally, we want x3 such that

N3x3 = 6x3 ≡ 1 (mod 5)

Ô⇒ x3 ≡ 1 (mod 5).

Therefore, we can take x3 = 1.

Then

x = a1N1x1 + a2N2x2 + a3N3x3

= 1 ⋅ 3 ⋅ 5 ⋅ 1 + 2 ⋅ 2 ⋅ 5 ⋅ 1 + 3 ⋅ 2 ⋅ 3 ⋅ 1

= 15 + 20 + 18

= 53

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x ≡ 1 (mod 2)

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

Therefore, x ∈ Z, such that

x ≡ 53 ≡ 23 (mod 30)

are all the solutions.
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Problem 33

There are 17 thieves who rob a bank. They try to divide the $ equally amongst themselves, but $3 remain.

Along the way, one of them dies. When they return return to their hiding place, they try again, but $10

remain. One of them kills another out of greed. They try again, and they manage to divide the money

equally this time. What is the minim amount of $ they stole?

Solution: Using CRT

Let d be the number of dollars stolen. Then

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

d ≡ 3 (mod 17)

d ≡ 10 (mod 16)

d ≡ 0 (mod 15)

In this case, we have

N1 = 16 ⋅ 15

N2 = 17 ⋅ 15

N3 = 17 ⋅ 16

We want to find x1, x2, x3 ∈ N such that

16 ⋅ 15x1 = N1x1 ≡ 1 (mod 17)

17 ⋅ 15x2 = N2x2 ≡ 1 (mod 16)

17 ⋅ 16x3 = N3x3 ≡ 1 (mod 15)

1 ≡ 16 ⋅ 15x1 ≡ (−1) ⋅ (−2)x1 (mod 17)

⇔ 2x ≡ 1 (mod 17)

Ô⇒ x1 ≡ 18x1 = 9 ⋅ 2x1 ≡ 9 (mod 17)

Take x1 = 9.

1 ≡ 17 ⋅ 15x2 ≡ 1 ⋅ (−1)x2 (mod 16)

⇔ − x2 ≡ 1 (mod 16)

⇔ x2 ≡ −1 ≡ 15 (mod 16)

Take x2 = 15.

1 ≡ 17 ⋅ 16x3 ≡ 2 ⋅ 1x3 ≡ 2x3 (mod 15)

16x3 ≡ 8 (mod 15) Multiply both side by 8

x3 ≡ 8 (mod 15)
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Take x3 = 8.

Then all solutions are congruent to

x = a1N1x1 + a2N2x2 + a3N3x3

= 3 ⋅ 16 ⋅ 15 ⋅ 9 + 10 ⋅ 17 ⋅ 15 ⋅ 15 + 0
®
=a3

⋅⋯ (mod 17 ⋅ 16 ⋅ 15)

Equivalently

d ≡ 3930 (mod 4080)

The smallest such d ∈ N is 3930.

Solution: Not Using CRT

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

d ≡ 3 (mod 17)

d ≡ 10 (mod 16)

d ≡ 0 (mod 15)

From the last equation,

d = 15x for some x ∈ Z

From the second equation,

15x = d ≡ 10 (mod 16)

−x ≡ 10 (mod 16)

x ≡ −10 ≡ 6 (mod 16)

This implies that

x = 16y + 6 with y ∈ Z

Ô⇒ d = 15x = 15 (16y + 6)

= 15 ⋅ 16y + 90

From the first equation,

15 ⋅ 16y + 90 = d ≡ 3 (mod 16)

Therefore,

15 ⋅ 16y ≡ 3 − 90 (mod 17)

Ô⇒ 2y ≡ −87 (mod 17)

≡ −2 (mod 17)

Ô⇒ y ≡ −1 ≡ 16 (mod 17)

Ô⇒ y = 17z + 16 with z ∈ Z
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Then

d = 15 ⋅ 16y + 90

= 15 ⋅ 16 (17z + 16) + 90

= 15 ⋅ 16 ⋅ 17z + (162 ⋅ 15 + 90)

= 4080z + 3930 z ∈ Z

The smallest such d ∈ N is 3980.

Recall the following proposition:

Proposition 9.1.2

If a ∈ Z, n ∈ Z, then

ax ≡ 1 (mod n)

has a solution if and only if gcd (a,n) = 1.

In fact, if gcd (a,n) = 1, it has a unique solution modulo n.

Moral of this proposition is that you can "invert" a modulo n (which is a−1 mod n) if and only if gcd (a,n) = 1.

Example 9.1.3.

5x ≡ 1 (mod 3)

If x ≡ 2 (mod 3), then

5x ≡ 5 ⋅ 2 = 10 ≡ 1 (mod 3)

In inverse, when gcd (a,n) = 1, we can speak of x ≡ a−1 mod n.

In the above situation, 5−1 ≡ 2 (mod 3).

Example 9.1.4.

7x ≡ 1 (mod 9)

If x ≡ 4 (mod 9), then

7x ≡ 7 ⋅ 4 = 28 ≡ 1 (mod 9)

Therefore,

7−1 ≡ 4 (mod 9)

If you want to use Euclidean algorithm, then solving 7x ≡ 1 (mod 9) is more or less the same if as solving

7x − 1 = 9y

7x − 9y = 1
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9.2 New proof of Fermat’s Little Theorem

Consider a prime p and the numbers

1,2,3,⋯, p − 1

If you take x ∈ Z such that p ∤ x, then

x = pq + r 0 < r ⩽ p − 1

In order to prove that if p ∤ a then

ap−1 ≡ 1 (mod p)

what we can do is consider

a,2a,3a,⋯, (p − 1)a mod p

Proposition 9.2.1

a,2a,3a,⋯, (p − 1)a reduced modulo p is exactly the set 1,2,3,⋯, p − 1 again.

Proof. It suffices to show that none of a,2a,3a,⋯, (p − 1)a is divisible by p, and that they are distinct modulo p.

None of them is divisible by p because p ∤ a and p ∤ i for any 1 ⩽ i ⩽ p − 1.

They are also all distinct modulo p.

Otherwise, we can find 1 ⩽ i, j ⩽ p − 1 such that i ≠ j and

ai ≡ aj (mod p) (1)

However, gcd (a, p) = 1, so there exists a−1 (mod p) , and so

i ≡ 1 ⋅ i

≡ (a−1a) ⋅ i

≡ a−1 (a ⋅ i)

≡ a−1 (a ⋅ j)

≡ 1 ⋅ j

≡ j (mod p)

Since gcd (a, p) = 1, there is an x such that

ax ≡ 1 (mod p) Applying 8.1

Multiplying both sides of (1) by x.

(1) is equivalent to

p ∣ ai − aj = a (i − j)

p ∤ a Ô⇒ p ∣ i − j

Since i ≡ j (mod p) and i ⩽ i, j ⩽ p − 1,

i = j
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Now since a,2a,⋯, (p − 1)a are exactly 1,2,3,⋯, p − 1 (mod p).
We have

a ⋅ (2a) ⋅ (3a) ⋅⋯ ⋅ ((p − 1)a)

≡1 ⋅ 2 ⋅ 3 ⋅⋯ ⋅ (p − 1) (mod p)

i.e.

ap−1 (p − 1)!

≡ (p − 1)! (mod p)

Since p is a prime, p ∤ (p − 1)!. Therefore, (p − 1)! is invariable modulo p.

This implies

ap−1 ≡ 1 (mod p)

as required.

9.3 Euler Totient Function and Euler’s Theorem

Definition 9.3.1

The Euler’s totient function ϕ is given by

ϕ (n) ∶=#{a ∈ N ∣ 1 ⩽ a ⩽ n such that gcd (a,n) = 1}

Example 9.3.2.

ϕ (3) =#{1 ⩽ a ⩽ 3 such that gcd (a,3) = 1}

=#{1,2}

= 2

More generally, if p is a prime number, then

ϕ (p) =#{a ∈ N ∣ 1 ⩽ a ⩽ p gcd (a, p) = 1}

=#{1,2,⋯, p − 1}

= p − 1

Example 9.3.3.

ϕ (4) =#{1 ⩽ a ⩽ 4 ∶ gcd (a,4) = 1}

=#{1,3}

= 2
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Euler generalized Fermat’s Little Theorem as follows:

Theorem 9.3.4: Euler’s Theorem

If a ∈ Z and n ∈ N such that gcd (a,n) = 1, then

aϕ(n) ≡ 1 (mod n)

If n = p is a prime number then if gcd (a, p) = 1,

aϕ(p) ≡ 1 (mod p)

But note that

ϕ (p) =#{1 ⩽ a ⩽ p ∶ gcd (a, p) = 1}

= {1,2,⋯, p − 1}

= p − 1

Proof of Euler’s Theorem. Consider

{a1,⋯, aϕ(n)} = {a ∈ N ∶ 1 ⩽ a ⩽ n,gcd (a,n) = 1}

Then if gcd (a,n) = 1, we have by a similar argument as in the proof of Fermat’s Little Theorem that modulo n

aa1, aa2,⋯, aaϕ(n)

is the same as

a1, a2,⋯, aϕ(n)

gcd (n, a1,⋯, aϕ(n)) = 1

and so

aϕ(n) ≡ 1 (mod n)

How to compute ϕ (n) in general?

Proposition 9.3.5: Computation of ϕ (n) in general

Consider
ϕ (n)
n

= P [1 ⩽ a ⩽ n ∣ gcd (a,n) = 1]

Let n = pα1

1 ⋅⋯ ⋅ pαkk be the prime factor of n.

Then the probability that 1 ⩽ a ⩽ n and pi ∤ a is 1 − 1
pi

. This is true for each pi.

ϕ (n)
n

= (1 − 1

p1
)⋯(1 − 1

pk
)
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ϕ (n) = n(1 − 1

p1
)⋯(1 − 1

pk
)

Example 9.3.6.

ϕ (33) = 33 (1 − 1

3
)

= 32 (3 − 1)

= 18

Example 9.3.7. If p is a prime, then

ϕ (pk) = pk (1 − 1

p
)

= pk−1 (p − 1)

For instance,

ϕ (24) = 23 (2 − 1)

= 8

Ô⇒ 38 ≡ 1 (mod 16)

Proof of the proposition. An argument is probabilistic. Note that

ϕ (n)
n

= P [1 ⩽ a ⩽ n ∣ gcd (a,n) = 1]

A number is 1 ⩽ a ⩽ n is relatively prime to n⇔ p1 ∤ a, p2 ∤ a,⋯, pk ∤ a.

The probability that pi ∤ a is 1 minus the probability that pi ∣ a, i.e.

1 −
n
pi

n
= 1 − 1

pi
ϕ (n)
n

= (1 − 1

p1
) ⋅ (1 − 1

p2
)⋯(1 − 1

pk
)

ϕ (n) = n(1 − 1

p1
)⋯(1 − 1

pk
)

as required.

Problem 34

21003 (mod 45)?
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Solution

gcd (2,45) = 1

By Euler’s theorem,

2ϕ(45) ≡ 1 (mod 45)

ϕ (45) = ϕ (32 ⋅ 5)

= 32 ⋅ 5(1 − 1

3
)(1 − 1

5
)

= 32 ⋅ 5(2
3
)(4

5
)

= 3 ⋅ 2 ⋅ 4

= 24

ans so

224 ≡ 1 (mod 45)

How can we write

1003 = 24q + r, 0 ⩽ r ⩽ 23

= 24 ⋅ 41 + 19

So

21003 = 224⋅41+19

= (224)41 ⋅ 219 (mod 45)

≡ 219 (mod 45)

So now we have a sub problem, find

219 (mod 45)

Then let’s find

219 (mod 32)

and

219 (mod 5)

By Euler’s theorem

2ϕ(3
2) ≡ 1 (mod 32) By Euler’s theorem

ϕ (32) = 32 (1 − 1

3
)

= 9 ⋅ 2
3

= 6
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Thus,

219 = 26⋅3+1

≡ 21 (mod 9)

≡ 2 (mod 9)

By FLT,

24 ≡ 1 (mod 5)

19 = 4 ⋅ 4 + 3, and

219 = 24⋅4+3

= (24)4 ⋅ 23

≡ 23

≡ 3 (mod 5)

Now we have the system
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

21003 ≡ 219 ≡ 2 (mod 9)

21003 ≡ 219 ≡ 3 (mod 5)

By the CRT, there is a unique solution modulo 45 to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x ≡ 2 (mod 9)

x ≡ 3 (mod 5)

Let N1 = 5, N2 = 9.

Then we want to find x1 and x2 such that

5x1 ≡ N1x1 ≡ 1 (mod 9) (1)

9x2 ≡ N2x2 ≡ 1 (mod 5) (2)

Multiply (1) by 2 to get

x1 ≡ 10x1 ≡ 2 (mod 9)

Take x1 = 2.

Note that 9 ≡ −1 (mod 5) and so (2) is equivalent to

−x2 ≡ 9x2 ≡ 1 (mod 5)

Ô⇒ x2 ≡ −1 ≡ 4 (mod 5)

Take x2 = 4.
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By the CRT,

x = a1N1x1 + a2N2x2

= 2 ⋅ 5 ⋅ 2 + 3 ⋅ 9 ⋅ 4

= 20 + 108

= 128

≡ 38 (mod 45)

is the unique solution modulo 45.
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Chapter 10

Week 10: Wilson Theorem; Reformulation

of Fermat’s Little Theorem; P-adic

Valuations of n!

10.1 Wilson Theorem

Theorem 10.1.1: Wilson Theorem

If p is a prime number, then

(p − 1)! ≡ −1 (mod p)

Example 10.1.2.

(1) If p = 3, then we have

(3 − 1)! = 2! = 2 ≡ −1 (mod 3)

(2) If p = 5, then we have

(5 − 1)! = 4! = 24 ≡ −1 (mod 5)

Recall the following:

If gcd (a, p) = 1, then

ax ≡ 1 (mod p)

has a unique solution modulo p.

Proof. Write

(p − 1)! = 1 ⋅ 2 ⋅⋯ (p − 1)

Whenever x ∈ {1,2,⋯, p − 1} and x2 /≡ 1 (mod p), you can find a y ∈ {1,2,⋯, p − 1} such that y ≠ x and xy ≡ 1

(mod p).
Which ones cannot be paired with another number?
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Exactly those x such that

x2 ≡ 1 (mod p)

Equivalently, when

p ∣ x2 − 1 = (x − 1) (x + 1)

i.e.

p ∣ x − 1 or p ∣ x + 1

i.e.

x ≡ 1 (mod p) or x ≡ −1 ≡ p − 1 (mod p)

Therefore,

(p − 1)2 ≡ 1 ⋅ (2 ⋅ 3⋯ (p − 1)) (p − 1)

≡ 1 ⋅ (−1)

≡ −1 (mod p)

Note that when p = 2, we have

(2 − 1)! = 1 ≡ −1 (mod 2)

Theorem 10.1.3

Suppose p is an odd prime number. Then

x2 ≡ −1 (mod p)

has a solution if and only if

p ≡ 1 (mod 4)

Example 10.1.4.

(1) If p = 5, the theorem claims that

x2 ≡ −1 (mod 5)

x = 2 is a solution since

22 = 4 ≡ −1 (mod 5)

(2) For p = 13, we have x = 5 as a solution to

x2 ≡ −1 (mod 13)

Indeed,

52 = 25 ≡ −1 (mod 13)

One direction: If p is an odd prime number that

p ≡ 1 (mod 4)
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Then

x2 ≡ −1 (mod p)

has a solution.

Proof of one direction. By Wilson’s theorem, we know that

(p − 1)! ≡ −1 (mod p)

Note that

(p − 1)! = 1 ⋅ 2 ⋅⋯ ⋅ (p − 1

2
) ⋅ (p + 1

2
) ⋅⋯ ⋅ (p − 1)

And

p + 1

2
= p − p − 1

2
≡ −(p − 1

2
) (mod p)

p + 3

2
= p − p − 3

2
≡ −(p − 3

2
) (mod p)

⋮

p − 1 = p − 1 ≡ −1 (mod p)

Consequently,

(p − 1)! ≡ 1 ⋅ 2 ⋅⋯ ⋅ (p − 1

2
) ⋅ (−1) ⋅ (−2) ⋅⋯ ⋅ (−(p − 1

2
))

≡ (−1)
p−1
2 [1 ⋅ 2 ⋅⋯ ⋅ p − 1

2
]
2

(mod p)

Since p ≡ 1 (mod 4), p − 1

2
is even!

We have deduced that when p ≡ 1 (mod 4),

(p − 1)! ≡ [(p − 1

2
)!]

2

(mod p)

By Wilson’s theorem, this is ≡ −1 (mod p). Thus, x = [(p−1
2

)!]2 is a solution.

One direction of the theorem is proved.

When p = 5, the proof boils down to the following computation:

−1 ≡ (5 − 1)!

= 1 ⋅ 2 ⋅ 3 ⋅ 4 (mod 5)

= (1 ⋅ 2) (5 − 2) (5 − 1)

≡ (1 ⋅ 2) (−2) (−1)

≡ (−1)2 (2!)2

= 22 (mod 5)

The other direction: if p is an odd prime number and

x2 ≡ −1 (mod p)
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has a solution, then

p ≡ 1 (mod 4)

Definition 10.1.5: Order of a modulo

Suppose n ∈ N and a ∈ Z such that gcd (a,n) = 1. Then the order of a modulo n, denoted by ord (n), is the

smallest k ∈ N such that

ak ≡ 1 (mod n)

Warning: Fermat’s Little Theorem and Euler’s theorem do not necessarily provide the smallest power k for which

ak ≡ 1 (mod n).

Example 10.1.6. Take n = p = 7 and a = 2.

Fermat’s Little Theorem say that 27−1 ≡ 1 (mod 7).
However, we have

23 = 8 ≡ 1 (mod 7)

Theorem 10.1.7

Suppose n ∈ N and a ∈ Z such that gcd (a,n) = 1. Then let ordn (a) be the order of a modulo n.

(ordn (a) ∈ N such that aordn(a) ≡ 1 (mod n).)
If am ≡ 1 (mod n), then

ord (a) ∣m

Proof. Assume to the contrary that

ordn (a) ∤m.

This assumption, combined with the division algorithm, implies that

m = ordn (a) q + r, q, r ∈ N, 0 < r < orda (n)

We then have

1 ≡ am

≡ aordn(a)q+r (mod n)

= (aordn(a))
q ⋅ ar (mod n)

≡ 1q ⋅ ar

= ar (mod n)

Since 0 < r < orda (n), this contradicts the minimality of ordn (a).
The collusion follows.

Back to the proof of the other direction.
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Proof of the other direction. To prove the other direction, note that

x2 ≡ −1 (mod p) Ô⇒ x4 ≡ 1 (mod p).

Therefore,

ordp (x) ∣ 4

Consequently, it is 1, 2, or 4. It is not 1 or 2 as

x2 ≡ −1 /≡ 1 (mod p) p is odd

The order of x is, therefore, 4.

On the other hand, note that

x2 ≡ −1 (mod p) Ô⇒ gcd(x, p) = 1

Indeed, if p ∣ x, then from p ∣ x2 + 1, we would botian p ∣ 1, a contradiction.

By Fermat’s Little Theorem, we have

xp−1 ≡ 1 (mod p)

By the previous theorem, we must have

ordp (x) ∣ p − 1 Ô⇒ 4 ∣ p − 1,

that is, p ≡ 1 mod 4, as required.

10.2 Reformulation of Fermat’s Little Theorem

Suppose p is a prime number.

Consider the sets

0 = pZ = {⋯,−2p,−p,0, p,2p,⋯}

1 = 1 + pZ = {⋯,1 − 2p,1 − p,1,1 + p,1 + 2p,⋯}

⋮ ⋮

p − 1 = (p − 1) + pZ

Recall the following:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a ≡ b (mod p)

c ≡ d (mod p)
Ô⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a + c ≡ b + d (mod p)

ac ≡ bd (mod p)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a ≡ b (mod p)

c ≡ d (mod p)
Ô⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a + c ≡ b + d (mod p)

ac ≡ bd (mod p)

From 0,1,⋯, p − 1, let’s keep only those elements a such that there is an x satisfying

ax = a ⋅ x = 1⇔ ax ≡ 1 (mod p)

Note that for any a ∈ {0,1,⋯, p − 1}
a ⋅ 1 = a ⋅ 1 = a
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The "invertible" a are precisely these a such that gcd (a, p) = 1.

Therefore, every element of

{1,2,⋯, p − 1}

has an inverse.

We also have that

(a ⋅ b) c = abc = a ⋅ (b ⋅ c)

(associativity).

Definition 10.2.1: Group

A group (G,∗) is a set G with a binary operation

∗ ∶ G ×G→ G

satisfying

(1) there is a distinguished element 1 ∈ G such that for every g ∈ G, 1 ∗ g = g ∗ 1 = g.

(2) ∗ is associative:

a ∗ (b ∗ c) = (a ∗ b) ∗ c

for every a, b, c ∈ G.

(3) for every g ∈ G there is an x ∈ G such that

g ∗ x = x ∗ g = 1

Example 10.2.2.

(Z/pZ)× = {1,2,⋯, p − 1}

under multiplication (modulo p ).

Theorem 10.2.3: Lagrange

If G is a finite group with ∣G∣ elements, then for every g ∈ G,

g∣G∣ = 1.

Example 10.2.4. In (Z/pZ)×,

ap−1 = 1

i.e. ap−1 ≡ 1 (mod p) for every a such that gcd(a, p) = 1.
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10.3 P-adic Valuations of n!

Problem 35

For prime p, what is vp (n!)?

Note that

n! = 1 ⋅ 2 ⋅⋯ ⋅ n

How many of 1,2,3,⋯, n are divisible by p but not p2?

To solve this, we have the notation:

Definition 10.3.1: Floor Function

Given x ∈ R, ⌊x⌋ is the largest integer ⩽ x.

Example 10.3.2.

⌊2.75⌋ = 2

⌊−1.25⌋ = −2

Lemma 10.3.2.1

The number of integers 1 ⩽ a ⩽ n such p ∣ a is ⌊n
p
⌋.

Proof.

p ∣ a⇔ ∃k ∈ Z ∶ a = pk

We want this multiple to satisfy

1 ⩽ a = pk ⩽ n.

Equivalently, we want

1 ⩽ k ⩽ ⌊n
p
⌋

So we have ⌊n
p
⌋ choices for such k.

The conclusion follows.

Example 10.3.3.

1,2,3,4,5,6,7,8

How many are multiples of 3?

Answer:

⌊8
3
⌋ = 2
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Among 1,2,3,⋯, n, exactly

⌊n
p
⌋ − ⌊ n

p2
⌋ .

have p-adic valuation 1.

How many of a ∈ {1,2,⋯, n} satisfy

vp (a) = 2?

The answer is

⌊ n
p2

⌋ − ⌊ n
p3

⌋

Continuing in this way, the number of a ∈ {1,⋯, n} such that vp (a) = k is

⌊ n
pk

⌋ − ⌊ n

pk+1
⌋

So

vp (n!) = (⌊n
p
⌋ − ⌊ n

p2
⌋) + 2(⌊ n

p2
⌋ − ⌊ n

p3
⌋) + 3(⌊ n

p3
⌋ − ⌊ n

p4
⌋) +⋯

= ⌊n
p
⌋ + ⌊ n

p2
⌋ + ⌊ n

p3
⌋ +⋯

Proposition 10.3.4

p prime,

vp (n!) = ⌊n
p
⌋ + ⌊ n

p2
⌋ + ⌊ n

p3
⌋ +⋯

Example 10.3.5.

v2 (5!) = ⌊5
2
⌋ + ⌊ 5

22
⌋ + ⌊ 5

23
⌋ +⋯

= 2 + 1

= 3

In fact,

5! = 120 = 2 ⋅ 3 ⋅ 5

Another way of computing vp (n!) is as follows.

Write

n = akpk + ak−1pk−1 +⋯ + a1p + a0,

where 0 ⩽ ai ⩽ p − 1. (base p expansion of n)

The proposition may then be reformulated as
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vp(n!) = ⌊n
p
⌋ + ⌊ n

p2
⌋ +⋯

=
n − sp(n)
p − 1

= n − (a0 + a1 +⋯ + ak)
p − 1

.

By definition, sp(n) = a0 +⋯ + ak is the sum of the digits of n in its base p expansion.

Note that

⌊n
p
⌋ = ⌊akp

k +⋯ + a1p + a0
p

⌋

= ⌊akpk−1 + ak−1pk−2 +⋯ + a0
p

⌋

= akpk−1 +⋯ + a2 + ⌊a0
p

⌋
²

=0

⌊ n
p2

⌋ = ⌊akp
k +⋯ + a1p + a0

p2
⌋

= ⌊akpk−2 + ak−1pk−3 +⋯ + a1p + a0
p2

⌋

= akpk−2 +⋯ + a2 + ⌊a1p + a0
p2

⌋
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

Since a1p + a0 ⩽ (p − 1)p + (p − 1) < p2

Continuing in this fashion, we end with

⌊ n
pk

⌋ = ak

Note that ⌊npk+1⌋ = 0 and also for higher powers of p. Summing these, we obtain using geometric sums of the form

1 + p + p2 +⋯ + pa = p
a+1 − 1

p − 1

that

vp(n!) = ak(1 + p +⋯ + pk−1) + ak−1(1 + p +⋯ + pk−2) +⋯ + ak

= ak (
pk − 1

p − 1
) + ak−1 (

pk−1 − 1

p − 1
) +⋯ + a1 (

p − 1

p − 1
)

= (akpk + ak−1pk−1 +⋯ + a1p) − (ak + ak−1 +⋯ + a1)
p − 1

= (akpk + ak−1pk−1 +⋯ + a1p + a0) − (ak + ak−1 +⋯ + a1 + a0)
p − 1

=
n − sp(n)
p − 1
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Example 10.3.6.

v2 (5!) =
5 − s2 (5)
2 − 1

= 5 − 2

2 − 1

= 3

Problem 36

n ∈ N. Then

n!
RRRRRRRRRRR

n−1

∏
k=0

(2n − 2k)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(2n−20)(2n−21)⋯(2n−2n−1)

(Generalized Factorials Bhargava (fields medal in 2014))

Proof. Recall that

a ∣ b⇔ for every prime p, vp (a) ⩽ vp (b)

Therefore, it suffices to show that for every prime p,

vp (n!) ⩽ vp (
n−1

∏
k=0

(2n − 2k))

For p = 2, we have

v2 (
n−1

∏
k=0

(2n − 2k)) ⩾ v2 (2n − 2n−1)

= v2 (2n−1)

= n − 1

On the other hand

v2 (n!) =
n − s2 (n)

2 − 1

⩽ n − 1

2 − 1

= n − 1

Now suppose p is an odd prime.

Since p is odd, gcd (2, p) = 1.

By Fermat’s Little Theorem, (if 1 ⩽ k (p − 1) ⩽ n)

2p−1 ≡ 1 (mod p) Ô⇒ 2j(p−1) ≡ 1 (mod p) for any j ∈ N

First note that

vp (n!) =
n − sp (n)
p − 1

⩽ ⌊n − 1

p − 1
⌋
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On the other hand, 2j(p−1) ≡ 1 (mod p)
Ô⇒ p ∣ 2j(p−1) − 1

Also, for p odd,

vp (
n−1

∏
k=0

(2n − 2k))

=vp (20 ⋅ 21 ⋅⋯ ⋅
n−1

∏
k=0

(2n−k − 1))

= vp (2
n(n−1)

2 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+
n

∏
k=1

vp (2k − 1)

At least how many of 2k − 1 are divisible by p?

By Fermat’s Little Theorem, at least those k = j(p − 1) s.t. 1 ⩽ k = j (p − 1) ⩽ n.

The number of such j is at least ⌊ n
n−1

⌋, so at least this many of 2k − 1 have p-adic valuation at least 1. Therefore,

from the above computations and this fact, we have

vp (
n−1

∏
k=0

(2n − 2k))

⩾
n

∑
k=1

vp(2k − 1)

⩾
n

∑
j∶1≤j(p−1)≤n

vp(2k − 1)

⩾
n

∑
j∈N∶1⩽j(p−1)⩽n

1

⩾ ⌊ n

p − 1
⌋

⩾ ⌊n − 1

p − 1
⌋

⩾ vp (n!)

We have deduced that for every odd prime p as well that vp(n!) ⩽ vp (
n−1

∏
k=0

(2n − 2k)). We also have it for p = 2

above. We conclude the solution to the problem.

Remark. This divisibility result fits within the much larger framework of generalized factorials whose foundations

were laid out in the undergraduate Harvard thesis of the recent fields medalist (equivalent of the Nobel prize in

mathematics) Manjul Bhargava (professor at Princeton). Of course, his fields medal was not awarded for this work!
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Chapter 11

Week 11: Group Theory

11.1 A Taste of Group Theorem

Recall the following definition

Definition 11.1.1: Group

A group (G,∗) is a set G equipped with a binary operation

∗ ∶ G ×G→ G

such that

(1) There is an element e ∈ G such that for every x ∈ G

x ∗ e = e ∗ x = x

(2) Associativity: for any three elements x, y, z ∈ G

(x ∗ y) ∗ z = x ∗ (y ∗ z)

(3) For any x ∈ G, there is a y ∈ G such that

x ∗ y = y ∗ x = e

Example 11.1.2.

G = R× ∶= R/{0}

∗ = multiplication

e = 1 (for any x ∈ R/{0}, x ⋅ 1 = 1 ⋅ x = x)
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It is associative, for any x ∈ R/{0},

x ⋅ ( 1
x
) = ( 1

x
) ⋅ x = 1

Example 11.1.3.

G = Z

∗ = +

e = 0 (for any x ∈ Z, x + 0 = 0 + x = x)

It is clearly associative, and for any x ∈ Z,

x + (−x) = (−x) + x = 0

Example 11.1.4.

Z/nZ = {0,1,2,⋯, n − 1}

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 = n

−1 = n − 1

∗ = + modulo n.

For instance

1 + 2 = 1 + 2 = 3

n − 1 + 1 = n = 0

+ modulo n is associative:

a + (b + c) = a + b + c = a + b + c

(a + b) + c = a + b + c = a + b + c

Furthermore, for any a ∈ Z/nZ, we have additive inverses:

a + −a = a + (−a) = 0

−a + a = (−a) + a = 0

Example 11.1.5.

(Z/pZ)× = {1,2,⋯, p − 1} p prime

∗ = multiplication modulo p

It is associative:

a ⋅ (b ⋅ c) = a ⋅ (bc) = a ⋅ (bc) = abc
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If gcd (a, p) = gcd (b, p) = 1. Then

gcd (ab, p) = 1

ab = r ∈ (Z/pZ)× , ab = pq + r q, r ∈ Z,0 < r < p

Also note that for any a ∈ (Z/pZ)×,

1 ⋅ a = 1 ⋅ a = a = a ⋅ 1

For any a ∈ (Z/pZ)×, there is a b ∈ (Z/pZ) such that

a ⋅ b = b ⋅ a = 1

Why?

a ⋅ b = 1 ⇔ ab ≡ 1. (mod p)

This has a solution in b because gcd(a, p) = 1. All of this means that ((Z/pZ)× , ⋅) is a group.

Note that

∣(Z/pZ)×∣ = p − 1

Example 11.1.6.

{1 ⩽ a ⩽ n ∶ gcd (a,n) = 1} = {a1,⋯aϕ(n)}

Then let

(Z/nZ)× = {a1,⋯aϕ(n)}

∗ = multiplication modulo n

Note that we always have 1 ∈ (Z/nZ)× since gcd(1, n) = 1. This is the unit e = 1.

∗ is clearly associative as in the previous example where n is a prime.

By the exact same argument, every a ∈ (Z/nZ)× has an inverse (mod n).
Note that

∣(Z/nZ)×∣ = ϕ (n) .

Theorem 11.1.7: Lagrange

If G is a finite group, then for every x ∈ G of size ∣G∣

x∣G∣
°

x∗x∗⋯∗x
´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣G∣ times

= e

Example 11.1.8.
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(1) In (Z/pZ)×, Lagrange’s theorem says that for any a ∈ (Z/pZ)×,

ap−1 = 1

i.e. for any a ∈ Z such that gcd (a, p) = 1

ap−1 ≡ 1 (mod p)

i.e. Fermat’s Little Theorem.

(2) In (Z/nZ)×, it says that for any a ∈ (Z/nZ)×,

aϕ(n) = 1,

i.e. Euler’s theorem.

Example 11.1.9.

GL2 (R) ∶=
⎧⎪⎪⎨⎪⎪⎩
A =

⎡⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎦
∶ a, b, c, d ∈ R such that det (A) = ad − bc ≠ 0

⎫⎪⎪⎬⎪⎪⎭

∗ = matrix multiplication

e =
⎡⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎦
= I2

Note that matrix GL2(R) is closed under matrix multiplication because det(AB) = det(A)det(B). This

implies that if det(A) ≠ 0 ≠ det(B), then det(AB) ≠ 0, and so AB ∈ GL2(R).
As you know from linear algebra, matrix multiplication is associative.

Since det (A) ≠ 0 for any A ∈ GL2 (R), there is an inverse A−1 ∈ GL2 (R).
GL2 (R) is a group, but it is not true in general that

AB = BA

For example:

⎡⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

1 1

0 1

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

0 1

1 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 1

0 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

1 1

1 0

⎤⎥⎥⎥⎥⎦
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11.2 Applications of Group Theory to Combinations

Problem 37

Consider an 8 × 8 board filled by checkers as follows

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

Figure 11.1: 8 × 8 board filled by checkers

The rule is that you can jump diagonally over a piece in an adjacent square into an empty square, and then

remove the piece over which you have jumped.

Is it possible to find a sequence of moves and end up with exactly 1 piece on the board at the end?

Solution

Answer: It is impossible.

Consider the symmetries of a rectangle that is not a square. a represents flipping along the verticle

line, b represents flipping along the horizontal line, c represents rotation by 180○, while e represents doing

nothing.

G ∶= {a, b, c, e} (Klein 4-group)

is closed under composition of the moves. It is clear that e is the identity, it is associative. Also, each element

is its own inverse.
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This forms a group with the properties

a2 = b2 = c2 = e

ab = c, bc = a, ca = b

that you can see geometrically. Note that ab = ba, bc = cb, ca = ac (it is an abelian group, i.e. for any x, y ∈ G,

xy = yx).

You can also identify G with

Z/2Z ×Z/2Z = {(0,0), (1,0), (0,1), (1,1)}

where the composition law is component-wise addition modulo 2. You can view e as (0,0), a as (1,0), b as

(0,1), and c as (1,1).

b a c b

b a c b

b a c b

b a c b

c b a c

c b a c

c b a c

c b a c

Figure 11.2: Coloring

Color the squares of the board using the elements of G as above.

The crucial observation is that we can define a quantity that does not change under the admissible moves.

Let I be the product of all elements of G in the squares with a checker piece. When a move is made, for

example with a piece on a square labeled as a over a piece labeled as b, the two pieces are removed and a

piece is placed on a square with label c. Since ab = c, the quantity I does not change under such a move.

Similarly, I does not change under the other jumps.
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Initially, the product of the elements in squares with a checker piece is I = b4c4a2b2c2a2b4c4 = e. A board

with exactly one checker on it has I equal to either a, b, or c. Since I does not change under our possible

moves, we cannot get from our initial state to a state with exactly one checker piece.

Therefore, it is impossible to end up with exactly one checker piece.

Remark. The idea of invariants is pervasive in mathematics. It is another proof idea. Usually, when one wants to

prove the impossibility of a phenomenon, or that two geometric objects are fundamentally different, one associates

an object that does not change under the possible allowed moves. If the two geometric objects or states or...have

different gadgets associated to them, then it is impossible to go from the first state to the final state using only the

allowed sequence of operations.

An idea underlying invariants is that, typically, we are dealing with very complicated objects. Therefore, we try

to extract something more tractable from the objects. Our brains do this all the time. If we want to prove that

person X is not person Y , we may look at their eye colors or hair colors. If they have different eye colors, they are

different people (assuming eye color does not change or that it is measured at the exact same time). However, dif-

ferent people often have the same eye colors, and so we look for different physical features. Sometimes, people are

identical twins, making distinctions more difficult. Therefore, we look for psychological differences. If that fails, we

look at gene expression and epigenetic information (identical twins have the same DNA, from my understanding).

The analogue of this search for finer and finer invariants also happens in mathematics. Sometimes, this becomes

extremely difficult, as the finer the invariants becomes, the more difficult it is to compute them. The construction

of invariants is an art.

In mathematics, the invariants could be as simple as in the above problem, some other algebraic gadget, counts of

solutions to equations (for example, coming from physics), or some other object. There is a wealth of mathematics

dedicated to interesting invariants in various settings.

11.3 Special Functions in Group Theory

Problem 38

Suppose we have a 4 × 11 rectangle.

Figure 11.3: 4 × 11 rectangle

109

https://jacob-southerncity.github.io/


jacob-southerncity.github.io 3 - Special Functions in Group Theory Jacob Ma

Is it possible to tile the 4 × 11 rectangle using the following L-shaped pieces?

Figure 11.4: L shape piece

Definition 11.3.1: τ (n)

Suppose n ∈ N. Then

τ(n) ∶= ∑
d∣n,d∈N

1 = number of positive divisors of n

Proposition 11.3.2: Computation of τ (n)

Let n = pα1

1 ⋅⋯ ⋅ pαkk , pi distinct primes, αi ⩾ 1 integers.

τ (n) = (α1 + 1) (α2 + 1)⋯ (αk + 1)

Example 11.3.3.

τ(10) = τ(2 ⋅ 5)

I can have 0 or 1 number of 2’s in the divisor.

I can have 0 or 1 number of 5’s in the divisor.

τ(10) = 2 ⋅ 2 = 4

In fact, we have 1,2,5,10.

Proof of proposition. If d ∣ n = pα1

1 ⋯pαkk , then d = pβ1

1 ⋯pβkk , βi ≥ 0, where

0 ≤ βi ≤ αi

There are αi + 1 probabilities for βi.

Therefore,

τ(n) = (α1 + 1)⋯(αk + 1).
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Example 11.3.4.

τ(200) = τ(23 ⋅ 52)

= (3 + 1)(2 + 1)

= 12.

Note that

τ(23)τ(52) = (3 + 1)(2 + 1) = 12

Proposition 11.3.5

If m,n ∈ N s.t. gcd(m,n) = 1, then

τ(mn) = τ(m)τ(n)

Warning: Not true in general if m,n are not relatively prime.

Example 11.3.6.

τ(23) = 4

τ(2)τ(22) = (1 + 1)(2 + 1) = 6 ≠ 4

Proof of proposition. Write

m = pα1

1 ⋯pαkk , αi ≥ 1

n = qβ1

1 ⋯qβll , βj ≥ 1.

Since gcd(m,n) = 1,

{p1,⋯, pk} ∩ {q1,⋯, ql} = ∅

Thus,

τ (mn) = τ (pα1

1 ⋯pαkk ⋅ q
β1

1 ⋯qβee )

= (α1 + 1)⋯ (αk + 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

τ(m)

(β1 + 1)⋯ (βe + 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

τ(n)

= τ (m) τ (n)

Definition 11.3.7: σ (n)

For n ∈ N,

σ (n) = ∑
d∣n,d∈N

d

is the sum of the positive divisors of n.
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Question: How to compute this (if we know the prime fact. of n?)

Proposition 11.3.8: Computation of σ (n)

If n = pα1

1 ⋯pαkk , αi ≥ 1, pi distinct primes, then

σ(n) = (
pα1+1
1 − 1

p1 − 1
) ⋅ (

pα2+1
2 − 1

p2 − 1
)⋯(

pαk+1k − 1

pk − 1
)

Example 11.3.9.

σ(20) = σ(22 ⋅ 5)

= (1 + 2 + 22)(1 + 5)

= ∑
0≤α≤2
0≤β≤1

2α5β

= ( ∑
0≤α≤2

2α)( ∑
0≤β≤1

5β)

= (1 + 2 + 22)(1 + 5)

Proof of proposition.

σ(n) = (1 + p1 +⋯ + pα1

1 )(1 + p2 +⋯ + pα2

2 )⋯(1 + pk +⋯ + pαkk )

= (
pα1+1
1 − 1

p1 − 1
) ⋅ (

pα2+1
2 − 1

p2 − 1
)⋯(

pαk+1k − 1

pk − 1
) .

Example 11.3.10.

σ(20) = σ(22 ⋅ 51)

= (2
3 − 1

2 − 1
)(5

2 − 1

5 − 1
)

= 7 ⋅ (24
4

)

= 7 ⋅ 6

= 42.

Lemma 11.3.10.1

For r ≠ 1,

a + ar + ar2 +⋯ + ark = a(r
k+1 − 1)
r − 1

.

Proof. Let S = a + ar + ar2 +⋯ + ark.

Then rS = ar + ar2 +⋯ark + ark+1.
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rS − S = ark+1 − a

(r − 1)S = a(rk+1 − 1)

r≠1Ô⇒ S = a(r
k+1 − 1)
r − 1

.

Proposition 11.3.11

If m,n ∈ N s.t. gcd(m,n) = 1, then

σ(mn) = σ(m)σ(n).

Proof. Suppose

m = pα1

1 ⋯pαkk ,

n = qβ1

1 ⋯qβll ,

where αi ≥ 1, βi ≥ 1, pi, qj distinct primes.

Since gcd(m,n) = 1,

{p1,⋯, pk} ∩ {q1,⋯, ql} = ∅

By the previous prop,

σ(mn) = σ(pα1

1 ⋯pαkk qβ1

1 ⋯qβll )

=
⎛
⎝
pα1+1
1 − 1

p1 − 1

⎞
⎠
⋯
⎛
⎝
pαk+1k − 1

pk − 1

⎞
⎠
⎛
⎝
qβ1+1
1 − 1

q1 − 1

⎞
⎠
⋯
⎛
⎝
qβk+1l − 1

ql − 1

⎞
⎠

= σ(m)σ(n).

Again, note that the proposition is false if m and n are not necessarily relatively prime. For example, σ(22) = 7

while σ(2) = 3. Therefore, σ(22) ≠ σ(2)σ(2).

Lemma 11.3.11.1: Gauss’ Lemma

For n ∈ N,

n =∑
d∣n

ϕ(d).

Proof. Consider the numbers
1

n
,
2

n
,
3

n
,⋯, n

n

This consists of n number.

Reduce each of the number to lowest fractions. Then for each d, we have the ϕ(d) numbers of the form i
d
, where

gcd(i, d) = 1.
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For each d ∣ n, we have ϕ(d) such numbers in
1

n
,
2

n
,⋯, n

n
.

Therefore,

n =∑
d∣n

ϕ(d)

Example 11.3.12. Let n = 6,
1

6
,
2

6
,
3

6
,
4

6
,
5

6
,
6

6
.

In reduced form, this collection of 6 numbers is

1

6
,
1

3
,
1

2
,
2

3
,
5

6
,
1

1
.

If 1 ∣ 6, we have 1 = ϕ(1) numbers.

If 2 ∣ 6, we have 1 = ϕ(2) numbers.

For 3 ∣ 6, we have the numbers 1
3

and 2
3
, so we have 2 = ϕ(3) numbers.

For 6 ∣ 6, we have the numbers 1
6

and 5
6
, so we have 2 = ϕ(6) numbers.

From this, we obtain

6 = 1 + 1 + 2 + 2

= ϕ(1) + ϕ(2) + ϕ(3) + ϕ(6)

=∑
d∣6

ϕ(d)

Problem 39

Find a formula for

∑
1≤a≤n

gcd(a,n)=1

a,

when n > 1.

Solution

The claim is that

∑
1≤a≤n

gcd(a,n)=1

a = nϕ(n)
2

.

Proof. If n = 2, then

∑
1≤a≤2

gcd(a,2)=1

a = 1 = 2ϕ(2)
2

Order the numbers 1 ≤ a ≤ n s.t. gcd(a,n) = 1 as follows:

a1 < ⋯ < aϕ(n).
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If gcd(a,n) = 1, then gcd(n − a,n) = 1.

If you take a1, then n − a1 = aϕ(n).
Similarly,

(∗)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a2 + aϕ(n)−1 = n

⋮

aϕ(n) + a1 = n.

You should note that we never have ai = n − ai if n ≥ 3, but this does not matter that much.

(Why? Otherwise, 2ai = n
gcd(ai,n)=1Ô⇒ ai = 1 Ô⇒ n = 2.)

Summing (∗), we obtain

2 ∑
1≤a≤n

gcd(a,n)=1

a = nϕ(n)

Ô⇒ ∑
1≤a≤n

gcd(a,n)=1

a = nϕ(n)
2

Definition 11.3.13: Arithmetic Function

An arithmetic function is any function

f ∶ N→ R (or C).

Definition 11.3.14: Multiplicative Function

A multiplicative function is an arithmetic function f ∶ N→ C s.t. for any m,n ∈ N satisfying gcd(m,n) = 1,

f(mn) = f(m)f(n).

Example 11.3.15: Examples of multiplicative function.

• ϕ Euler’s totient function

• τ number of divisors

• σ sum of divisors

• id: N→ N ⊂ C, n↦ n, id(mn) = id(m)id(n)

Note that

τ(n) =∑
d∣n

1

and

σ(n) =∑
d∣n

d.
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Proposition 11.3.16

If f ∶ N→ C is multiplicative, then

g(n) ∶=∑
d∣n

f(d)

is also multiplicative.

Proof. Suppose m,n ∈ N s.t. gcd(m,n) = 1. We want to show that

g(mn) = g(m)g(n).

By definition,

g(mn) = ∑
d∣mn

f(d).

Since gcd(m,n) = 1, d = gcd(m,d)gcd(n, d).
From this, it can be seen that

∑
d∣mn

f(d) = ∑
d1∣m
d2∣n

f(d1d2). (1)

Since gcd(m,n) = 1, and d1 ∣m,d2 ∣ n,
gcd(d1, d2) = 1.

Since f is multiplicative,

f(d1d2) = f(d1)f(d2).

Therefore from (1),

g(mn) = ∑
d1∣m
d2∣n

f(d1)f(d2)

= ∑
d1∣m

∑
d2∣n

f(d1)f(d2)

= ∑
d1∣m

⎛
⎝
f(d1) ∑

d2∣n

f(d2)
⎞
⎠

=
⎛
⎝∑d1∣m

f(d1)
⎞
⎠
⎛
⎝∑d2∣n

f(d2)
⎞
⎠

= g(m)g(n)

Recall that

∫
R
∫
R
f(x)g(y)dxdy

= ∫
R
g(y) (∫

R
f(x)dx) dy

= (∫
R
g(y)dy)(∫

R
f(x)dx) .
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Also

N

∑
j=1

ajI = a1I + a2I +⋯ + aNI

= (a1 +⋯ + aN)I

= I
N

∑
j=1

aj .

Suppose that we have an arithmetic function f ∶ N→ C.

Then define the function

g(n) ∶=∑
d∣n

f(d).

g has a lot information about f .

Question. Can we recover f knowing g(n) for all n ∈ N?

Answer. Yes! Möbius Inversion Formula.
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Week 12: Mobius Inversion

12.1 Mobius Inversion

Recall from last class that given an arithmetic function

f ∶ N→ C

I defined g ∶ N→ C given by

g (n) ∶=∑
d∣n

f (d)

Question: g contains a lot of information of f . Can e recover f given g?

g (1) =∑
d∣1

f (d) = f (1)

g (2) =∑
d∣2

f (d) = f (1) + f (2) = g (1) + f (2) Ô⇒ f (2) = g (2) − g (1)

g (3) =∑
d∣3

f (d) = f (1) + f (3) = g (1) + f (3) Ô⇒ f (3) = g (3) − g (1)

g (4) =∑
d∣4

f (d) = f (1) + f (2) + f (4) = g (1) + (g (2) − g (1)) + f (4) Ô⇒ f (4) = g (4) − g (2)

Can we recover f (n) for every n ∈ N if we know g (n) for every n ∈ N?

Answer: Yes!

Definition 12.1.1: Mobius Function

The Mobius Function µ ∶ N→ R is defined as follows:

µ (n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if n = 1

(−1)r if n = p1⋯pr, pi distinct primes

0 otherwise
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Proposition 12.1.2

µ is a multiplicative function, i.e. if m,n ∈ N such that gcd (m.n) = 1, then

µ (mn) = µ (m)µ (n)

Proof. Clearly, if m or n = 1, then this follows from µ (1) = 1.

If there is a prime p such that p2 ∣ m or p2 ∣ n, then µ (m) = 0 or µ (n) = 0, respectively. Further more,

p2 ∣mn Ô⇒ µ (mn) = 0 as well.

It remains to consider the case where

m = p1⋯pr, n = q1,⋯qe, pi distinct, qj distinct

Since gcd (m,n) = 1,

{p1,⋯, pr} ∩ {q1,⋯, qe} = ∅

Therefore,

µ (mn) = µ (p1⋯prqq⋯qe) = (−1)r+e

= (−1)r (−1)e

= µ (p1⋯pr)µ (q1⋯qe)

= µ (m)µ (n)

Proposition 12.1.3

For every n ∈ N,

∑
d∣n

µ (d) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if n = 1

0 if n > 1

∶= e (n)

Proof. Recall from last class that since µ is multiplicative, so is

e (n) ∶=∑
d∣n

µ (d)

Therefore, if n = pα1

1 ⋯pαkk , αi ⩾ 1, pi distinct primes, then

e (n) = e (pα1

1 ⋯pαkk ) = e (pα1

1 ) e (pα2

2 )⋯e (pαkk )

If n = 1, then

e (1) =∑
d∣1

µ (d) = µ (1) = 1

It suffices to show that if n = pα, α ⩾ 1, p prime, then

e (pα) = 0
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Computing this, we have

e (pα) = ∑
d∣pα

µ (d)

= µ (1) + µ (p) + µ (p2) +⋯ + µ (pα)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

= 1 + (−1)

= 0

Definition 12.1.4: e (n) and I (n)

For n ∈ N,

•

e (n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if n = 1

0 if n ≠ 1

•

I (n) = 1

Theorem 12.1.5: Mobius Inversion Formula

If f ⋅N→ C and for every n ∈ N
g (n) ∶=∑

d∣n

f (d)

then

f (n) =∑
d∣n

µ(n
d
) g (d)

The converse is also true: if f is given as above in terms of g, then g satisfies the above formula in terms of

f .

Note that

∑
d∣n

µ(n
d
) g(d) =∑

d∣n

µ(d)g (n
d
) .

Indeed, d ranges over all divisors of n if and only if n/d ranges over all divisors of n (as d ranges over all divisors of

n).
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Definition 12.1.6: Dirichlet Convolution

Given, f, g ∶ N→ C,

(f ∗ g) (n) ∶ =∑
d∣n

f (d) g (n
d
)

= ∑
d1d2=n
d1,d2∈N

f (d1) g (d2)

= (g ∗ f) (n)

In the language of Dirichlet convolutions,

∑
d∣n

f (d) =∑
d∣n

f (d) I (n
d
) = f ∗ I

The statement that

∑
d∣n

µ(d) = e(n)

is equivalent to µ ∗ I = e.
Mobius Inversion is equivalent to g = f ∗ I ⇐⇒ f = µ ∗ g.

Proposition 12.1.7

Given f, g ∶ N→ C,

(1)

f ∗ g = g ∗ f

(2)

(f ∗ g) ∗ h = f ∗ (g ∗ h) Associativity

(3)

f ∗ e = f

Proof. (1) is clear.

For (2), note that

((f ∗ g) ∗ h)(n) = ∑
d1d2=n
d1d2∈N

(f ∗ g)(d1)h(d2)

= ∑
uvd2=n
u,v,d2∈N

f(u)g(v)h(d2)

You can similarly show that

(f ∗ (g ∗ h))(n) = ∑
u,v,d2∈N
uvd2=n

f(u)g(v)h(d2)

For (3), note that

(f ∗ e)(n) =∑
d∣n

f (n
d
) e(d) = f(n)
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Proof of Möbius Inversion using this formalism.

g(n) ∶=∑
d∣n

f(d) = (f ∗ I)(n) ⇐⇒ g = I ∗ f

We also know that µ ∗ I = e. Therefore, using the previous proposition,

µ ∗ g = µ ∗ (I ∗ f) = (µ ∗ I) ∗ f = e ∗ f = f,

that is,

f(n) =∑
d∣n

µ(n
d
) g(d).

Conversely, if this is satisfied, f = µ ∗ g, and so convolving with I on both sides gives

I ∗ f = I ∗ (µ ∗ g) = (I ∗ µ) ∗ g = e ∗ g = g,

that is,

g(n) ∶=∑
d∣n

f(d).

Remark. If A∗ ∶= {f ∶ N→ C ∣ f(1) ≠ 0}, Then (A∗,∗) is a group.

Problem 40

Show that for every n ∈ N,

1 =∑
d∣n

µ(n
d
) τ(d).

Solution

By definition,

τ(n) =∑
d∣n

1.

By Möbius inversion,

1 =∑
d∣n

µ(n
d
) τ(d)

Problem 41

Show that

ϕ(n) = n∑
d∣n

µ(d)
d

.
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Solution

Recall from Gauss’ Lemma that

n =∑
d∣n

ϕ(d).

Applying Möbius inversion, we obtain

ϕ(n) =∑
d∣n

µ(d)n
d

= n∑
d∣n

µ(d)
d

,

as required.

One could use this to show that

ϕ(n) = n(1 − 1

p1
)⋯(1 − 1

pk
)

if n = pα1

1 ⋯pαkk , αi ≥ 1, pi distinct. This would give a non-probabilistic proof of this formula that we saw

earlier in the course.

Problem 42

n =∑
d∣n

µ(n
d
)σ(d).

σ(n) =∑
d∣n

d.

Recall that Gauss’ Lemma states that for every n ∈ N,

id(n) = n =∑
d∣n

ϕ(d).

By Möbius inversion,

ϕ(n) =∑
d∣n

idc(n
d
)µ(d)

=∑
d∣n

n

d
µ(d)

= n∑
d∣n

µ(d)
d

µ(d)
d

is a multiplicative function, and so

ϕ(n) = n∑
d∣n

µ(d)
d

is a multiplicative function. This is a new proof that ϕ is multiplicative.

I want to give a new proof that if n < pα1

1 ⋯pαkk , αi ≥ 1, pi distinct primes, then

ϕ(n) = n(1 − 1

p1
)⋯(1 − 1

pk
)
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The idea of the proof is the same idea I used to show that

∑
d∣n

µ(d) = {
1 if n = 1

0 if n > 1
.

Since ϕ is multiplicative,

ϕ(pα1

1 ⋯ϕαkk ) = ϕ(pα1

1 )⋯ϕ(pαkk )

For each prime p and α ≥ 1 to

ϕ(pα) = pα
⎛
⎜⎜⎜⎜⎜
⎝

µ(1)
1

+ µ(p)
p

+ µ(p
2)

p2
+⋯ + µ(p

α)
pα

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 by def. of µ

⎞
⎟⎟⎟⎟⎟
⎠

= pα (1 − 1

p
)

Therefore,

ϕ(pα1

1 ⋯pαkk ) = pα1

1 (1 − 1

p1
)pα2

2 (1 − 1

p2
)⋯pαkk (1 − 1

pk
)

= pα1

1 ⋯pαkk (1 − 1

p1
)⋯(1 − 1

pk
)

= n(1 − 1

p1
)⋯(1 − 1

pk
) .

Problem 43

Suppose f ∶ N→ C (or R) s.t. for every n ∈ N, f(n) ≠ 0 and is multiplicative. Then find a formula for

g(n) ∶=∑
d∣n

µ(d)
f(d)

Solution

Since ϕ is multiplicative,

ϕ(pα1

1 ⋯ϕαkk ) = ϕ(pα1

1 )⋯ϕ(pαkk )

For each prime p and α ≥ 1 to

ϕ(pα) = pα
⎛
⎜⎜⎜⎜⎜
⎝

µ(1)
1

+ µ(p)
p

+ µ(p
2)

p2
+⋯ + µ(p

α)
pα

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 by def. of µ

⎞
⎟⎟⎟⎟⎟
⎠

= pα (1 − 1

p
)
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Therefore,

ϕ(pα1

1 ⋯pαkk ) = pα1

1 (1 − 1

p1
)pα2

2 (1 − 1

p2
)⋯pαkk (1 − 1

pk
)

= pα1

1 ⋯pαkk (1 − 1

p1
)⋯(1 − 1

pk
)

= n(1 − 1

p1
)⋯(1 − 1

pk
) .

Problem. Suppose f ∶ N → C (or R) s.t. for every n ∈ N, f(n) ≠ 0 and is multiplicative. Then find a formula

for

g(n) ∶=∑
d∣n

µ(d)
f(d)

Since µ, f are multiplicative, so is µ
f

(note that f never vanishes).

If n = 1, then we have

g(1) =∑
d∣1

µ(d)
f(d)

= µ(1)
f(1)

= 1

f(1)
.

For n ≥ 2, write

n = pα1

1 ⋯pαkk , αi ≥ 1, pi distinct primes.

Then

g(pα1

1 ⋯pαkk ) = g(pα1

1 )⋯g(pαkk )

=
⎛
⎜
⎝
∑
d∣p

α1
1

µ(d)
f(d)

⎞
⎟
⎠
⋯

⎛
⎜
⎝
∑
d∣p

αk
k

µ(d)
f(d)

⎞
⎟
⎠

=

⎛
⎜⎜⎜⎜
⎝

µ(1)
f(1)

+ µ(p1)
f(p1)

+ µ(p
2
1)

f(p21)
+⋯ +

µ(pα1

1 )
f(pα1

1 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

⎞
⎟⎟⎟⎟
⎠

⋯

⎛
⎜⎜⎜⎜⎜
⎝

µ(1)
f(1)

+ µ(pk)
f(pk)

+
µ(p2k)
f(p2k)

+⋯ +
µ(pαkk )
f(pαkk )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

⎞
⎟⎟⎟⎟⎟
⎠

= ( 1

f(1)
− 1

f(p1)
)⋯( 1

f(1)
− 1

f(pk)
)

Note that if you expand

ϕ(n) = n(1 − 1

p1
)⋯(1 − 1

pk
)

= n
⎛
⎝
1 − ( 1

p1
+⋯ + 1

pk
) + ∑

i1≠i2

1

pi1pi2
− ∑
i1,i2,i3 distinct

1

pi1pi2pi3

⎞
⎠

This could be interpreted using the principle of inclusion-exclusion. In fact, Mobius inversion may be put

within a general framework that specialize to both Mobius inversion and the principle of inclusion-exclusion.
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12.2 Multiplicative version of Möbius inversion

Theorem 12.2.1

Suppose f ∶ N→ N and let

g(n) =∏
d∣n

f(d)

Then

f(n) =∏
d∣n

g(d)µ(
n
d )

Proof. Take logarithms to reduce to

log g(n) =∑
d∣n

log f(d)

Möbius inversionÔ⇒ log f(n) =∑
d∣n

µ(n
d
) log g(d)

=∑
d∣n

log g(d)µ(
n
d )

= log∏
d∣n

g(d)µ(
n
d )

exp.
Ô⇒ f(n) =∏

d∣n

g(d)µ(
n
d ).

Problem 44

Suppose a1, a2, ⋯ is a sequence of natural numbers s.t.

gcd(am, an) = agcd(m,n).

Show that there is a unique seq of natural number b1, b2,⋯ s.t. for every n ∈ N,

an =∏
d∣n

bd.
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Chapter 13

Week 13: Quadratic reciprocity

13.1 Quadratic reciprocity

Recall the following theorem.

Theorem 13.1.1

Suppose p is an odd prime. Then x2 ≡ −1 (mod p) has a solution if and only if p ≡ 1 (mod 4)

Question. Suppose a ∈ Z and p is a prime. When does

x2 ≡ a (mod p)

have a solution?

Definition 13.1.2: Legendre Symbol

Suppose a ∈ Z, p prime (almost always odd).

Then

(a
p
) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if p ∣ a

−1 if x2 ≡ a (mod p) has no solutions

1 otherwise

Definition 13.1.3: Quadratic Residue

a ∈ Z is a quadratic residue mod p if

x2 ≡ a (mod p)

has a solution.

Otherwise, a is a quadratic non-residue.
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Theorem 13.1.4: Reformulation of previous theorem

If p is an odd prime, then

(−1
p

) = (−1)
p−1
2 .

Indeed, if p ≡ 1 (mod 4), then

4 ∣ p − 1 Ô⇒ 2 ∣ p − 1

2
Ô⇒ (−1)

p−1
2 = 1.

If p ≡ 3 (mod 4) then p − 1 = 4k + 2 for some k ∈ Z Ô⇒ p−1
2

= 2k + 1 is odd Ô⇒ (−1)
p−1
2 = −1.

Theorem 13.1.5: Euler’s criterion

If p is an odd prime, then

(a
p
) ≡ a

p−1
2 (mod p)

If p ∣ a, then by def,

(a
p
) = 0.

Also

p ∣ a
p−1
2 .

If p ∤ a, then by Fermat’s Little Theorem,

ap−1 ≡ 1 (mod p)

Ô⇒ p ∣ ap−1 − 1 = (a
p−1
2 − 1)(a

p−1
2 + 1)

Ô⇒ p ∣ (a
p−1
2 − 1) or p ∣ (a

p−1
2 + 1)

Ô⇒ a
p−1
2 ≡ ±1 (mod p)

To prove the above theorem, it suffices to show that if p ∤ a, then

a
p−1
2 ≡ 1 (mod p) ⇐⇒ a is a quadratic residue.

Proof of (⇐). If x2 ≡ a (mod p) has a solution, then

a
p−1
2 ≡ (x2)

p−1
2 = xp−1 FLT≡ 1 (mod p).

Note that since p ∤ a and x2 ≡ amod p, p ∤ x as well and so FLT may be applied.

Remark on previous material:

(1) Möbius Inversion formula is a number theoretic version of the fundamental theorem of calculus.

(2) Möbius inversion was generalized beyond number theory in the 60’s, Gian Carlo Rota wrote some papers on

Möbius inversion on posets.

(3) Recall the prime number theorem:

π(x) ∼ x

logx
.
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It is known that this is equivalent

lim
N→∞

∑n≤N µ(n)
N

= 0.

(4) Riemann hypothesis (one of the most important conjectures yet to be proved) is equivalent to showing that

for any ε > 0,

lim
N→∞

1

N
1
2+ε
∑
n≤N

µ(n)

is bounded.

Proposition 13.1.6

If p odd prime and p ∤ a, then

a
p−1
2 ≡ 1 (mod p)⇔ x2 ≡ a (mod p)

has a solution.

Proof. I showed that if x2 ≡ a (mod p) has a solution, then

a
p−1
2 ≡ 1 (mod p)

Suppose now that x2 ≡ a (mod p) has no solution. We must show that

a
p−1
2 ≡ −1 (mod p)

Consider the set

S ∶= {1,2,3,⋯, p − 1}

For each i ∈ S, find j ∈ S such that

ij ≡ a (mod p)

j must be unique. If you choose j, then by uniqueness again, it will be paired with i.

Since a is not a square mod p, j ≠ i. This fives us a pairing between the numbers

1,2,⋯, p − 1

We have a total of p−1
2

pairs such that for every pair {i, j}, ij ≡ a (mod p).
Therefore,

(p − 1)! ≡ a
p−1
2 (mod p)

By Wilson’s Theorem, the left hand side is ≡ −1 (mod p).

Theorem 13.1.7

a, b ∈ Z, p odd prime

(1)

(ab
p

) = (a
p
)( b

p
)
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(2)

(−1
p

) = (−1)
p−1
2

(3) The product of a nonzero (mod p) quadratic residue and a quadratic non-residue is a quadratic non-

residue.

(4) The product of two quadratic non-residues is a quadratic residue.

Proof of (1). By Euler’s criterion,

(ab
p

) ≡ (ab)
p−1
2

= a
p−1
2 b

p−1
2

≡ (a
p
)( b

p
) (mod p)

Ô⇒ p ∣ (ab
p

) − (a
p
)( b

p
)

Since

−1 ⩽ (ab
p

) ,(a
p
)( b

p
) ⩽ 1

Ô⇒
RRRRRRRRRRR
(ab
p

) − (a
p
)( b

p
)
RRRRRRRRRRR
⩽ 2

p odd Ô⇒ p ⩾ 3

If

(ab
p

) − (a
p
)( b

p
) ≠ 0,

then

3 ≤ p ≤ ∣(ab
p

) − (a
p
)( b

p
)∣ ≤ 2

Contradiction. Therefore,

(ab
p

) = (a
p
)( b

p
)

Example 13.1.8. Consider mod 5.

The possible squares mod 5 are

02 ≡ 0 (mod 5)

12 ≡ 1 (mod 5)

22 ≡ 4 (mod 5)

32 ≡ 4 (mod 5)

42 ≡ 1 (mod 5)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Ô⇒ 0,1,4 are the only quadratic residues mod 5;
2,3 are the quadratic non-residues

(2 ⋅ 3
5

) = 1.
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(2
3
) ,(3

5
) = −1 Ô⇒ (2

5
)(3

5
) = 1.

(4 ⋅ 2
5

) = (8
5
) = (3

5
) = −1

(4
5
) = 1, (2

5
) = −1.

Proposition 13.1.9

If a ≡ b (mod p), then

(a
p
) = ( b

p
)

Example 13.1.10.

(2
5
) = −1

and

2
5−1
2 = 22 = 4 ≡ −1 (mod 5)

So

(2
5
) ≡ 2

5−1
2 (mod 5)

as predicted by Euler’s criterion.

Example 13.1.11.

(1002
5

) = (2
5
) = −1

Example 13.1.12.

(1004
5

) = (4
5
) = (−1

5
) = (−1)

5−1
2 = 1

Example 13.1.13.

(57
7

) = (1
7
) = 1

Example 13.1.14.

(55
7

) = (−1
7

) = (−1)
7−1
2 = −1

13.2 Quadratic Reciprocity of Gauss

If you have two odd prime p, q, quadratic reciprocity will tell us that studying

x2 ≡ p (mod q)
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is intimately related to studying x2 ≡ q (mod p)

Theorem 13.2.1

If p, q are distinct odd primes, then

(p
q
)(q

p
) = (−1)

p−1
2 ⋅

q−1
2

⇔ for p, q odd primes, (p
q
) = (−1)

p−1
2 ⋅ q−12 (q

p
)

Example 13.2.2.

( 3

17
) = (−1)

3−1
2 ⋅

17−1
2 (17

3
)

= (17
3

)

= (2
3
)

= (−1
3

)

= (−1)
3−1
2

= −1

Thus 3 is not a quadratic residue of 17.

Example 13.2.3.

(15
19

) = ( 3

19
)( 5

19
)

= (−1)
3−1
2 ⋅

19−1
2 (19

3
) (−1)

5−1
2 ⋅

19−1
2 (19

5
)

= −(19
3

)(19
5

)

= −(1
3
)(4

5
)

= −1

Thus, 15 is not a quadratic residue of 19.

This computation demonstrates the general procedure. Of course, we could also do the computation as

follows without using quadratic reciprocity:

(15
19

) = (−4
19

) = (−1
19

)( 4

19
) = (−1)

19−1
2 = −1.
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(17
19

) = (−2
19

)

= (−1
19

)( 2

19
)

= (−1)
19−1

2 ( 2

19
)

= −( 2

19
)

Proposition 13.2.4

If p is an odd prime, then

(2
p
) = (−1)

p2−1
8

( If x is odd, then 8 ∣ x2 − 1 )

Continuing with the example, we have

(17
19

) = −( 2

19
) = (−1) ⋅ (−1)

192−1
8

Note that

192 − 1 = (19 − 1) (19 + 1)

= 18 ⋅ 20

= 23 ⋅ 32 ⋅ 5

and so

192 − 1

8
= 45

(−1) ⋅ (−1)
192−1

8 = (−1) ⋅ (−1) = 1

Another argument:

(17
19

) = (−1)
19−1

2 ⋅
17−1

2 (19
17

)

= (19
17

)

= ( 2

17
)

By applying the proposition, we obtain

( 2

17
) = (−1)

172

8 = (−1)
(17−1)(17+1)

8 = 1.

We could also proceed by noting that

( 2

17
) = (−15

17
) = (−1

17
)( 3

17
)( 5

17
) = ⋯
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Problem 45

Find all odd primes p such that

x2 ≡ −3 (mod p)

has a solution.

Solution

If p = 3, then x2 ≡ −3 ≡ 0 (mod 3) has x = 0 as a solution. So let’s assume that p ≠ 3. Then we want to find all

odd p ≠ 3 such that

(−3
p

) = 1

(−3
p

) = (−1
p

)(3
p
)

= (−1)
p−1
2 (3

p
)

= (−1)
p−1
2 (p

3
) (−1)

3−1
2 ⋅

p−1
2

= (−1)
p−1
2 + p−12 (p

3
)

= (p
3
)

For p ≠ 3,

(p
3
) = 1⇔ p ≡ 1 (mod 3)

Answer: p = 3 or p ≡ 1 (mod 3).

Proposition 13.2.5

There are infinitely many primes p ≡ 1 (mod 4), i.e. 1,5,9,⋯ has infinitely many primes.

Proof. Assume to the contrary that there are finitely many such primes

p1,⋯, pk.

Note that there is at least one such prime, 5, for example. Consider

N ∶= (2p⋯pk)2 + 1 > 1

There is an odd prime p ∣ N ,

p ∣ N Ô⇒ (2p1⋯pk)2 + 1 ≡ 0 (mod p)

Ô⇒ x2 ≡ −1 (mod p) has a solution

Ô⇒ (−1
p

) = 1 Ô⇒ p ≡ 1 (mod 4).

In the final implication, I used that p must be odd. It is also clear that

p ∉ {p1,⋯, pk}.
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Contradiction.

Theorem 13.2.6: Dirichlet

If n ∈ N and a ∈ Z such that

gcd (n, a) = 1,

then there are ∞ many primes p such that

p ≡ a (mod n)

In fact, asymptotically,

#{p prime s.t p ≡ a (mod n), p ⩽ x} ∼ x

ϕ (n) logx

Problem 46

Suppose p is a prime such that

p = x2 + xy + y2

for some x, y ∈ Z.

Then p = 3 or p ≡ 1 (mod 3).

Solution

It is easy to see that p = 2 is not of this form.

On the other hand,

3 = 12 + 1 ⋅ 1 + 12 x = 1, y = 1

Ô⇒ 3 is of this form.

Let’s assume that p is an odd prime ≠ 3 and

p = x2 + xy + y2 for some x, y ∈ Z (1)

(1) implies that

4p = 4x2 + 4xy + 4y2

= ((2x)2 + 2 ⋅ (2x) y + y2) + 3y2

= (2x + y)2 + 3y2

Ô⇒ (2x + y)2 ≡ −3y2 (mod p) (2)
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If p ∣ y, then y ≡ 0 (mod p), and so

(2x)2 ≡ (2x + y)2

≡ −3y2

≡ 0 (mod p)

Ô⇒ p ∣ 4x2

Ô⇒ p ∣ x

We then obtain

p = x2 + xy + y2 ≡ 0 (mod p2)

Ô⇒ p2 ∣ p

a contradiction. Therefore, p ∤ y, and so there is a z such that

yz ≡ 1 (mod p).

Consequently, (2) implies that

z2 (2x + y)2 ≡ −3y2z2

≡ −3 (mod p)

This means that −3 is a quadratic residue modulo p, i.e.

p≠3
Ô⇒ (−3

p
) = 1

Ô⇒ p ≡ 1 (mod 3).

The final conclusion follows from two problems ago.

Problem 47

Show that if n ∈ N, then no prime divisor of 2n + 1 is ≡ −1 (mod 8).

Solution

Suppose n is even, and p is a prime such that p ∣ 2n + 1. Then

−1 ≡ (2
n
2 )2 (mod p)

Ô⇒ 1 = (−1
p

) = (−1)
p−1
2 Ô⇒ p ≡ 1 (mod 4)

In particular,

p /≡ −1 (mod 8)
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Assume now that n is odd. In this case
n + 1

2
∈ Z, andso

(2
n+1
2 )

2
= 2n+1

≡ −2 (mod p).

Therefore,

(−2
p

) = 1

However,

(−2
p

) = (−1
p

)(2
p
)

= (−1)
p−1
2 + p

2−1
8

If p ≡ −1 (mod 8) , then

p = 8k − 1 for some k ∈ Z

Ô⇒ p2 − 1

8
=

((8k − 1)2 − 1)
8

= 642k2 − 16k

8
is even.

On the other hand,

p − 1

2
= (8k − 1) − 1

2

= 4k − 1 is odd.

These computations imply that if p ≡ −1 mod 8, then (−2
p
) ≠ 1. Therefore, again, we cannot have

p ≡ −1 mod 8.

The conclusion follows.

Theorem 13.2.7

If a > 1 is a natural number that is not a square, then

(a
p
) = −1

for ∞ many primes p.
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Problem 48

If f ∈ Z [X] of degree 2 such that for any prime p, there is n ∈ N such that p ∣ f (n), then all roots of f are

rational.

Proposition 13.2.8

If p is an odd prime, then

(2
p
) = (−1)

p2−1
8

Lemma 13.2.8.1: Gauss

Suppose p is an odd prime and a ∈ Z, p ∤ a. Consider the numbers

1,2,3,⋯, p − 1

2

and

a,2a,3a,⋯, a(p − 1

2
) .

Reduce these numbers and choose remainders in

−p − 1

2
≤ r < p − 1

2

after division by p.

Let l be the number of such remainders that are < 0. Then

(a
p
) = (−1)l.

Reminder on division algorithm: Given x ∈ Z, then we may write

x = bp + r, where 0 ≤ r < p, b ∈ Z

In stead, you can write

x = cp + s, where − p − 1

2
≤ s < p − 1

2

Proof of lemma. Let the remainder of ai mod p lying in −p−1
2

≤ r < p−1
2

be denoted by ai.

Then it is clear that

1 ≤ ∣ai∣ ≤
p − 1

2

for every i.

We claim that for every pair i ≠ j, ∣ai∣ ≠ ∣aj ∣.
Indeed, if ∣ai∣ = ∣aj ∣, then

ai = ±aj (∗)

Since

ai ≡ ai mod p, aj ≡ aj mod p,

(∗) Ô⇒ p ∣ a(i − j) or p ∣ a(i + j)
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Since p ∤ a, this means p ∣ i − j or p ∣ i + j. Since −p−1
2

≤ i, j < p−1
2

, this is only possible if

i = j.

Therefore, the ∣ai∣ are distinct.

Therefore,

(−1)la1⋯a p−1
2

= ∣a1∣⋯∣a p−1
2

∣ = 1 ⋅ 2⋯p − 1

2
= (p − 1

2
)!, (1)

and so

a1⋯a p−1
2

= (−1)l (p − 1

2
)!

On the other hand,

a1⋯a p−1
2

≡ (a)(2a)⋯((p − 1

2
)a) ≡ a

p−1
2 (p − 1

2
)! (mod p) (2)

Combining (1) and (2), we obtain

(−1)l (p − 1

2
)! ≡ a

p−1
2 (p − 1

2
)! (mod p)

p∤( p−12 )!Ô⇒ (−1)l ≡ a
p−1
2 mod p, (3)

By Euler’s criterion,

(a
p
) ≡ a

p−1
2 (mod p).

Combining with (3), we obtain

(a
p
) ≡ (−1)l (mod p)

p odd
i.e. p≥3
Ô⇒ (a

p
) = (−1)l.

We can use this to prove the proposition that for odd p,

(2
p
) = (−1)

p2−1
8 .

Indeed, if we consider

1,2,3,⋯, p − 1

2
,

it is easy to see that exactly for

1 ≤ j ≤ ⌊p
4
⌋ ,

we have 2j leaving positive remainder, and that for

⌊p
4
⌋ < j ≤ p − 1

2
,

2j has negative remainder in [−p−1
2
, p−1

2
)

Ô⇒ l = p − 1

2
− ⌊p

4
⌋ .

It is an exercise to show that
p − 1

2
− ⌊p

4
⌋ ≡ p

2 − 1

8
mod 2,
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from which the conclusion would follow.

Problem 49

Find all odd primes p s.t.

(7
p
) = 1.

Solution

Clearly, if p = 7, then this is not satisfied. Therefore, assume p ≠ 7.

Applying quadratic reciprocity,

(7
p
) = (−1)

7−1
2 ⋅ p−12 (p

7
) = (−1)

p−1
2 (p

7
) .

There are two main cases:

1. (−1)
p−1
2 = −1 and (p

7
) = −1.

2. (−1)
p−1
2 = 1 and (p

7
) = 1.

The nonzero quadratic residues mod 7 are

12 ≡ 1 (mod 7)

22 ≡ 4 (mod 7)

32 ≡ 2 (mod 7)

42 ≡ 32 ≡ 2 (mod 7)

⋮

Ô⇒ nonzero quadratic residues: 1,2,4, and quadratic non-residues: 3,5,6.

1.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p ≡ 3 (mod 4)

p ≡ 3 (mod 7)
Ô⇒ p ≡ 3 mod 28

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p ≡ 3 (mod 4)

p ≡ 5 (mod 7)
Ô⇒ p ≡ 19 mod 28

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p ≡ 3 (mod 4)

p ≡ 6 (mod 7)
Ô⇒ p ≡ 27 mod 28
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2.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p ≡ 1 (mod 4)

p ≡ 1 (mod 7)
Ô⇒ p ≡ 1 mod 28

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p ≡ 1 (mod 4)

p ≡ 2 (mod 7)
Ô⇒ p ≡ 9 mod 28

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p ≡ 1 (mod 4)

p ≡ 4 (mod 7)
Ô⇒ p ≡ 25 mod 28

Therefore we have

p ≡ 1,3,9,19,25,27 (mod 28).

Problem 50

If p = x2 − 7y2 is a prime (x, y ∈ Z), what can say about p?

Solution

Let us assume for now that p ≠ 7. Reducing mod p, we must have

x2 ≡ 7y2 mod p.

p ∤ y; otherwise p ∣ x, y Ô⇒ p2 ∣ x2 − 7y2 = p which is a contradiction.

Therefore, there is a z s.t.

zy ≡ 1 mod p.

Multiplying by z2, we obtain

(xz)2 = z2x2 ≡ 7y2z2 = 7(yz)2 ≡ 7 mod p

p≠7
Ô⇒ (7

p
) = 1 Ô⇒ p ≡ 1,3,9,19,25,27 mod 28.

What about p = 7? Can we write 7 = x2 − 7y2 for some x, y ∈ Z?

No. Indeed, if this were possible, then

7(1 + y2) = x2

Ô⇒ 7 ∣ x

Ô⇒ x = 7x1 for some x1 ∈ Z.

Ô⇒ 7(1 + y2) = (7x1)2 = 49x21

Ô⇒ 1 + y2 = 7x21 ≡ 0 mod 7

Ô⇒ 1 = (−1
7

) = (−1)
7−1
2 = −1
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Thus there is a contradiction.
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Chapter 14

Week 14: Final Review

Induction ⇐ Well ordering principle

1 + 2 + 3 +⋯ + n = n(n + 1)
2

Property 14.0.1: Combinatorial identities

(n
k
) = (n − 1

k
) + (n − 1

k − 1
) (Pascal’s identity)

(n
k
) = n

k
(n − 1

k − 1
)

Example 14.0.2.
n

∑
k=0

k(k − 1)(k − 2)(n
k
) = n(n − 1)(n − 2)2n−3

Proof.

(n
k
) = n

k
(n − 1

k − 1
)

= n(n − 1)
k(k − 1)

(n − 2

k − 2
)

= n(n − 1)(n − 2)
k(k − 1)(k − 2)

(n − 3

k − 3
)

We could also prove such identities by giving arguments.

Theorem 14.0.3: Newton’s binomial theorem

(a + b)n =
n

∑
k=0

(n
k
)akbn−k
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In particular,

(1 + x)n =
n

∑
k=0

(n
k
)xk

n(1 + x)n−1 =
n

∑
k=0

k(n
k
)xk−1

n(n − 1)(1 + x)n−2 =
n

∑
k=0

k(k − 1)(n
k
)xk−2

n(n − 1)(n − 2)(1 + x)n−3 =
n

∑
k=0

k(k − 1)(k − 2)(n
k
)xk−3

We briefly touched on Fermat’s Little Theorem.

Theorem 14.0.4: Fermat’s Little Theorem

If p is a prime, a ∈ Z, s.t. p ∤ a, then

p ∣ ap−1 − 1 , i.e. ap−1 ≡ 1 (mod p)

In general, ap ≡ a mod p for any a ∈ Z

The first used that if p is a prime, then

p ∣ (p
k
) for any 1 ≤ k ≤ p − 1

We discussed gcd’s.

The foundation was

Theorem 14.0.5: Bézout

If a, b ∈ Z, at least one of which is nonzero, then

ax + by = gcd(a, b)

has integral solutions.

In particular,

ax + by = 1 has integer integral solutions ⇐⇒ gcd(a, b) = 1.

In relation to gcd and lcm, we talked about p-adic valuations.

If
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m = pα1

1 ⋯pαkk , αi ≥ 0

n = pβ1

1 ⋯pβkk , βi ≥ 0

, then

gcd(m,n) = pmin{α1,β1}
1 ⋯pmin{αk,βk}

k

We also had the Euclidean algorithm for computing gcds.
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This method was useful for solving equations of the form

ax + by = c.

Theorem 14.0.6

If (x0, y0) ∈ Z ×Z. such that

ax0 + by0 = c,

Then all solutions are given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x = x0 − b
gcd(a,b)

t

y = y0 + a
gcd(a,b)

t
, t ∈ Z

Theorem 14.0.7

For a, b ∈ N,

lcm(a, b) = ab

gcd(a, b)

Problem 51

If a, b ∈ N s.t. gcd(a, b) = 1, then show that

lcm(a2 + b3, b5 + a2b + b4) = b(a2 + b3)(b4 + a2 + b3).

There is a class of problems had to do with the non-existence of integer solutions.

Problem 52

Show that

x2 + y2 = 4000z2 + 3 (*)

has no integer solutions.

Solution

Replace mod 4 to obtain

x2 + y2 ≡ 3 mod 4 (**)

If an integer solution (x, y, z) to (∗) were to exist, then (∗∗) would have solutions. Modulo 4, the quad

residues are 0 and 1 and so

x2 + y2 ≡ 0,1, or 2 mod 4
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Proposition 14.0.8

If x is odd, then

x2 ≡ 1 mod 8.

Proof. Write x = 2k + 1, k ∈ Z, then

x2 = 4k2 + 4k + 1

= 4k(k + 1) + 1

≡ 1 mod 8

Problem 53

Are there odd integers x, y, z,w, u, v s.t.

x2 + y2 + z2 +w2 + u2 = 80!v2 + 7?

Solution

For any odd a ∈ Z, a2 ≡ 1 mod 8.

If a solution exists, then

x2 + y2 + z2 +w2 + u2 ≡ 5 mod 8,

while the right hand side is ≡ 7 mod 8.

You could also do this modulo 4, since an odd number squared is also 1 modulo 4. The right hand

side would be 3 modulo 4, while the left hand side would be 1 modulo 4. (Sorry for forgetting that the

numbers are odd when saying in class that modulo 4 it would not have worked! A memory lapse.) If we

only had three variables on the left hand side, then modulo 4 would not have worked while modulo 8 would

have worked.

Problem 54

Are there integer solutions to

x2 + y2 − 112z2 = 583?

Solution

Reducing modulo 11, we obtain

x2 + y2 ≡ 0 mod 11

Ô⇒ x2 ≡ −y2 mod 11.
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Claim. 11 ∤ y.

Assume to the contrary that 11 ∣ y. Then

x2 ≡ −y2 ≡ 0 mod 11

Ô⇒ 11 ∣ x, y

Ô⇒ 112 ∣ x2 + y2 − 112z2 = 583 = 11 ⋅ 53,

a contradiction.

Therefore, there is a w ∈ Z s.t.

yw ≡ 1 mod 11,

and so

(xw)2 ≡ −(yw)2 ≡ −1 mod 11

Ô⇒ (−1
11

) = 1

However,

(−1
11

) = (−1)
11−1

2 = (−1)5 = −1

Problem 55

Let a1 = 5, a2 = 19 and an = an−1 + 2an−2 for n ≥ 2.

Show that for every n,

gcd(an, an+1) = 1.

Solution

We apply induction on n. If n = 1, then we have

gcd(a1, a2) = gcd(5,19) = 1.

Now suppose

gcd(ak, ak+1) = 1.

For n = k + 1, we have

gcd(ak+1, ak+2)

= gcd(ak+1, ak+1 + 2ak)

= gcd(ak+1, (ak+1 + 2ak) − ak+1)

= gcd(ak+1,2ak)

= gcd(ak+1, ak),

which is 1 by the inductive hypothesis.
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Problem 56

Suppose p and q are distinct prime numbers. Then show that

√
p +√

q +√
pq

is irrational.

Solution

We know that if
√
p is rational, then

√
p = x

y
, x, y ∈ N

Ô⇒ py2 = x2

Apply vp to obtain

vp(p) + 2vp(y) = vp(py2) = vp(x2) = 2vp(x).

Assume to the contrary that

√
p +√

q +√
pq = x

y
, x, y ∈ N

Ô⇒√
q +√

pq = x
y
−√

p

square
Ô⇒ q + 2q

√
p + pq = x

2

y2
− 2x

y

√
p + p

Ô⇒√
p =

x2

y2
+ p − 1 − pq
2q + 2x

y

∈ Q.

If you want to show divisibility, say

a ∣ b,

then by unique prime factorization, it suffices to show that for all primes p,

vp(a) ≤ vp(b).

Recall that

vp(gcd(a1,⋯, an)) =min{vp(a1),⋯, vp(an)},

vp(lcm(a1,⋯, an)) =max{vp(a1),⋯, vp(an)}.

Theorem 14.0.9

e and π are irrational.

We discussed counting primes.
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Theorem 14.0.10: PNT

π(x) ∼ x

logx
as x→ +∞.

Theorem 14.0.11: Euler

If n ∈ N, a ∈ Z,gcd(a,n) = 1, then

aϕ(n) ≡ 1 mod n.

Problems involving Euler’s theorem:

Problem 57

Find 21000 mod 100 and 31000 mod 100.

If you want to find

am (mod n),

write n = pα1

1 ⋯pαkk .

Then compute

am (mod pαii )

for each i.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

am ≡ a1 (mod pα1

1 )

⋮

am ≡ ak (mod pαkk )

ϕ(pα) = pα−1(p − 1)

ϕ(p2) = p(p − 1)

Problem 58

Find the last two digits of 71001

Solution

We need find 71000 (mod 100).
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ϕ (100) = ϕ (22 ⋅ 52)

= ϕ (22)ϕ (52)

= 2 (2 − 1) ⋅ 5 (5 − 1)

= 40

Since 1000 ≡ 0 (mod 40), 71000 ≡ 70 = 1 (mod 100)
Answer: 01

If we want to use the CRT, we would have to compute

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

71000 ≡ 1 (mod 22)

71000 ≡ 1 (mod 52)
Ô⇒ 71000 ≡ 1 (mod 100)

Problem 59

Find the last two digits of 683.

Solution

We need to compute 683 mod 100. gcd (6,100) = 2 ≠ 1. so we need to apply CRT.

683 ≡ 0 (mod 4)

It remains to find

683 mod 25

ϕ (25) = 5 (5 − 1) = 20

and

83 ≡ 3 (mod 20)

Therefore

683 ≡ 63

= 36 ⋅ 6

≡ 11 ⋅ 6

= 66

≡ 16 (mod 25)

We have
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

683 ≡ 0 (mod 4)

683 ≡ 16 (mod 25)

Uniqueness of CRT
ÔÔÔÔÔÔÔ⇒ 683 ≡ 16 (mod 100)
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Theorem 14.0.12: Lagrange

If G is a finite group of order ∣G∣, then for every g ∈ G,

g∣G∣ = e

Euler’s theorem = Lagrange applied to (Z/nZ)×

Property 14.0.13: Special Functions

• ϕ

• τ (n) = ∑d∣n 1

• σ (n) = ∑d∣n d

• µ

Proposition 14.0.14

If n = pα1

1 ⋯pαkk , αi ⩾ 1, pi distance primes, then

τ (n) = (α1 + 1)⋯ (αk + 1)

σ (n) = (1 + p1 +⋯pα1

1 )⋯ (1 + pk +⋯pαkk )

= (
pα1+1
1 − 1

p1 − 1
)⋯(

pαk+1k − 1

pk − 1
)

Problem 60

What is the sum of all divisors of 90 that are divisible by 3?

Solution

The prime factorizations of 90 is 2 ⋅ 32 ⋅ 5. Therefore, the answer is

(1 + 2) (3 + 32) (1 + 5) = 3 ⋅ 12 ⋅ 6

= 36 ⋅ 6

= 180 + 36

= 216

Note: This is specific to numbers divisible by 3 since we are not containing 30 = 1 in (3 + 32).
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You could write this as

∑
0⩽α1⩽1
1⩽α2⩽2
0⩽α3⩽1

2α13α25α3 = ( ∑
0⩽α1⩽1

2α1)( ∑
1⩽α2⩽2

3α2)( ∑
0⩽α3⩽1

5α3)

= (1 + 2) (3 + 32) (1 + 5)

= 216

Definition 14.0.15

µ (n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if n = 1

(−1)r if n = p1⋯pr, pi distinct primes

0 otherwise

Theorem 14.0.16: Möbius inversion formula

Suppose f, g ∶ N→ R

Then if for every n,

g (n) =∑
d∣n

f (d)⇔ f (n) =∑
d∣n

µ(n
d
) g (d)

Problem 61

Show that

n =∑
d∣n

µ(n
d
)σ (d) .

Solution

By Möbius inversion, this is equivalent to showing

σ (n) =∑
d∣n

d for every n

This is true by definition.

Problem 62

Show that

ϕ (n) =∑
d∣n

µ(n
d
)d = n∑

d∣n

µ (d)
d
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Solution

By Gauss’ Lemma,

n =∑
d∣n

ϕ (d)

By Möbius inversion formula, we obtain the result.

Proposition 14.0.17

If f ∶ N→ R is multiplicative, i.e, if m,n ∈ N such that gcd (m,n) = 1, then g ∶ N→ R given by

g (n) ∶=∑
d∣n

f (d)

is also multiplicative

Problem 63

Compute

f (n) ∶∑
d∣n

ϕ (d)
d2

in terms of the prime factorization n = pα1

1 ⋯pαkk

Solution

f (1) = ϕ (1)
12

= 1

d↦ ϕ(d)
d2

is a multiplicative function, and so f is a multiplicative function.

Therefore for n = pα1

1 ⋯pαkk > 1, it suffices to compute each f (pα), p prime:

f (n) = f (pα1

1 )⋯f (pαkk )

= (1 +
pα1

1 − 1

pα1+1
1

)⋯(1 +
pαkk − 1

pαk+1k

)
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f (pα) = ∑
d∣pα

ϕ (d)
d2

= ϕ (1)
12

+⋯ + ϕ (pα)
p2α

= 1 + p − 1

p2
+ p (p − 1)

p4
+⋯ + p

α−1 (p − 1)
p2α

= 1 + (p − 1) [ 1

p2
+ 1

p3
+⋯ + 1

pα+1
]

= 1 + (p − 1)
pα+1

[1 + p +⋯ + pα−1]

= 1 + p − 1

pα + 1
[p

α − 1

p − 1
]

= 1 + p
α − 1

pα+1

Problem 64

What can you say about primes of the form

p = x2 + 2xy + 4y2?

Solution

x2 + 2xy + 4y2 = (x + y)2 + 3y2.

Therefore,

(x + y)2 ≡ −3y2 (mod p). (∗)

Note that p = 3 is such a prime, take x = −1, y = 1.

Let’s assume p ≠ 3.

If p ∣ y, then (∗) implies that p ∣ x.

Therefore,

p2 ∣ x2 + 2xy + 4y2 = p,

a contradiction.

Therefore, p ∤ y, and so there is a z s.t. zy ≡ 1 mod p, and so

(z(x + y))2 ≡ −3(zy)2 ≡ −3 mod p

Ô⇒ (−3
p

) = 1
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1 = (−3
p

)

= (−1
p

)(3
p
)

= (−1)
p−1
2 (p

3
) (−1)

3−1
2 ⋅ p−12

= (p
3
)

Ô⇒ p ≡ 1 mod 3
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