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9.1 Three-Dimensional Coordinate Systems

Theorem 9.1.1: Distance Formula in Three Dimensions

The distance ∣P1P2∣ between the points P1(x1, y1, z1) and P2(x2, y2, z2) is

∣P1P2∣ =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

Theorem 9.1.2: Equation of a Square

An equation of a sphere with center C(h, k, l) and radius r is

(x − h)2 + (y − h)2 + (z − l)2 = r2

In particular, if the center is the origin O, then an equation of the sphere is

x2 + y2 + z2 = r2

9.2 Vectors

Definition 9.2.1: Vector Addition

If u and v are vectors positioned so the initial point of v is at the terminal point of u, then the sum of u + v

is the vector from the initial point of u to the terminal point of v.
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Definition 9.2.2: Scalar Multiplication

If c is a scalar and vis a vector, then the scalar multiple cv is the vector whose length is ∣c∣ times the length

of v and whose direction is the same as v if c > 0 and is opposite to v if c < 0. If c = 0 or v = 0, then cv = 0.

Corollary 9.2.3

The length of the two-dimensional vector a = <a1, a2> is

∣a∣ =
√
a2

1 + a2
2

The length of the three-dimensional vector a = <a1, a2, a3> is

∣a∣ =
√
a2

1 + a2
2 + a2

3

9.3 The Dot Product

Definition 9.3.1: Dot Product

If a = <s1, a2, a3> and b<b1, b2, b3>, then the dot product of a and b is the number a ⋅ b given by

a ⋅ b = a1b1 + a2b2 + a3b3

Theorem 9.3.2

If θ is the angle between the vectors a and b, then

a ⋅ b = ∣a∣∣b∣ cos θ

Corollary 9.3.3

If θ is the angle between the nonzero vectors a and b, then

cos θ = a ⋅ b
∣a∣∣b∣

Theorem 9.3.4: Orthogonal

Two vectors a and b are orthogonal if and only if a ⋅ b=0.

u ⊥ v⇔ ∥u + v∥2 = ∥u∥2 + ∥v∥2

3
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Definition 9.3.5: Projections

Scalar projection (Component) of b onto a:

compab = a ⋅ b
∣a∣

Vector projections of b onto a:

projab = (a ⋅ b
∣a∣ ) a

∣a∣ =
a ⋅ b
∣a∣2 ⋅ a

9.4 The Cross Product

Definition 9.4.1: Cross Product

If a = <a1, a2, a3> and b = <b1, b2, b3>, then the cross product of a and b is the vector

a × b =< a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1 >

Theorem 9.4.2

The vector a × b is orthogonal to both a and b.

Theorem 9.4.3

If θ is the angle between a ans b (so 0 ⩽ θ ⩽ π), then

∣a × b∣ = ∣a∣∣b∣ sin θ

Corollary 9.4.4: Parallel

Two nonzero vectors a and b are parallel if and only if

a × b = 0

a × b = 0 ⇔ a ∥ b ⇔ b = ka for k ∈ R

Definition 9.4.5: Scalar Triple Product

a ⋅ (b × c) =

RRRRRRRRRRRRRRRRRRR

a1 a2 a3

b1 b2 b3

c1 c2 c3

RRRRRRRRRRRRRRRRRRR
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Property 9.4.6: Area and Volumes

Area of parallelogram:

Aparallelogram = ∥a × b∥

Volume of parallelepiped determined by the vectors a, b, and c, is the magnitude of their scalar triple

product:

V = ∣a ⋅ (b × c)∣

If the volume of the parallelepiped determined by a,b,c is 0, then the vectors must lie in the same plane;

that is , they are coplanar,

Property 9.4.7: Directing and Normal Vector

If a line in R2 is directed by u < α,β >, then n < −β,α > is a vector ⊥ to this line.

u ⋅ n = 0⇔ u ⊥ n

9.5 Equations of Lines and Planes

Definition 9.5.1: Vector Equation

The vector equation of L. Each value of of the parameter t gives the position vector r of a point on L.

r = r0 + tv

Definition 9.5.2: Parametric Equation of L

Parametric equation of the line L through the point P0(x0, y0, z0) and parallel to the vector v =< a, b, c >.

Each value of the parameter t gives a point (x, y, z) on L.

x = x0 + at y = y0 + bt z = z0 + ct

The numbers a, b, c are called direction numbers of L.

Definition 9.5.3: Symmetric Equations of L

The following equation is called Symmetric Equations of L through the point P0(x0, y0, z0) and parallel to

the vector v =< a, b, c >.
x − x0

a
= y − y0

b
= z − z0

c

5
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Definition 9.5.4: Line Segment

The line segment from r0 to r1 is given by the vector equation

r = (1 − t)r0 + tr1

Definition 9.5.5: Vector Equation of the Plane

A plane in space is determined by a point P0(x0, y0, z0) in the plane and a vector that is orthogonal to the

plane. This orthogonal vector n is called a normal vector.

n ⋅ (r − r0) = 0

which can be rewritten as

n ⋅ r = n ⋅ r0

Definition 9.5.6: Scalar Equation of Plane

a(x − x0) + b(y − y0) + c(z − z0) = 0

This is the Scalar Equation of the plane through P0(x0, y0, z0) with normal vector n =< a,b, c >

Definition 9.5.7: Linear Equation of Plane

ax + by + cz + d = 0

where d = −(ax0 + by0 + cz0). This is called a linear equation in x, y, z.

For such an equation, normal vector is < a, b, c >.

Two planes are parallel if their normal vectors are parallel.

Theorem 9.5.8: Distance from Point to Plane

The distance D from a point P1(x1, y1, z1) to the plane ax + by + cz + d = 0 is

D = ∣ax1 + by1 + cz1 + d∣√
a2 + b2 + c2

6
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9.6 Cylinders and Quadric Surfaces

Definition 9.6.1: Cylinder

A cylinder is a surface that consists of all lines (called rulings) that are parallel to a given line and pass

through a give plane curve.

Parabolic Cylinder:

z = x2

Figure 9.1

Circular Cylinder:

x2 + y2 = 1

Definition 9.6.2: Quadric Surfaces

A quadric surface is the graph of a second-degree equation in three variables x, y, and z. It can be brought

into one of the two standard forms

Ax2 +By2 +Cz2 + J = 0 Ax2 +By2 + Iz = 0

7
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Property 9.6.3: Graph of Quadric Surfaces

Ellipsoid:
x2

a2
+ y

2

b2
+ z

2

c2
= 1

Cone:
z2

c2
= x

2

a2
+ y

2

b2

Elliptic Paraboloid:
z

c
= x

2

a2
+ y

2

b2

Hyperbolic Paraboloid:
z

c
= x

2

a2
− y

2

b2

Hyperboloid of One Sheet:
x2

a2
+ y

2

b2
− z

2

c2
= 1

Hyperboloid of Two Sheets:

−x
2

a2
− y

2

b2
+ z

2

c2
= 1
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9.7 Vector Functions and Space Curves

A vector-valued function, or vector function, is simply a function whose domain is a set of real numbers and

whose range is a set of vectors. If f(t), g(t), h(t) are components of the vector r(t), then f, g, h are real-valued

functions called component functions of r and we can write

r(t) =< f(t), g(t), h(t) >= f(t)i + g(t)j + h(t)k

Theorem 9.7.1: Limit of Vector Function

If r(t) =< f(t), g(t), h(t) >, then

lim
t→a

r(t) = ⟨ lim
t→a

f(t), lim
t→a

g(t), lim
t→a

h(t)⟩

provided the limits of the component functions exist.

A function r is continuous at a if

lim
t→a

r(t) = r(a)

Definition 9.7.2: Space Curve

The set C of all points (x, y, z) in space, where

x = f(t) y = g(t) z = h(t)

and t varies throughout the interval I, is called a space curve. The equations are called parametric equa-

tions of C and t is called a parameter.

Definition 9.7.3: Derivative r’

The derivative r’ of a vector function f is defined:

dr

dt
= r′ = lim

h→0

r(t + h) − r(t)
h

Theorem 9.7.4

If r(t) =< f(t), g(t), h(t) >= f(t)i + g(t)j + h(t)k, where f, g, h are differentiable functions, then

r′(t) =< f ′(t), g′(t), h′(t) >= f ′(t)i + g′(t)j + h′(t)k

Theorem 9.7.5: Differentiation Rules

Suppose u and v are differentiable vector functions, c is a scalar, and f is a real-valued function. Then

(1)
d

dt
[u(t) + v(t)] = u′(t) + v′(t)

9
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(2)
d

dt
[cu(t)] = cu′(t)

(3)
d

dt
[f(t)u(t)] = f ′(t)u(t) + f(t)u′(t)

(4)
d

dt
[u(t) ⋅ v(t)′] = u′(t) ⋅ v(t) + u(t) ⋅ v′(t)

(5)
d

dt
[u(t) × v(t)] = u′(t) × v(t) + u(t) × v′(t)

(6) Chain Rule
d

dt
[u(f(t))] = f ′(t)u′(f(t))

Theorem 9.7.6: Integrals

The definite integral of a continuous vector function r(t) can be defined

∫
b

a
r(t) dt = (∫

b

a
f(t) dt)i + (∫

b

a
g(t) dt)j + (∫

b

a
h(t) dt)k

9.8 Arc Length and Curvature

Theorem 9.8.1: Arc Length

If the curve is traversed exactly once as t increases from a to b, then it can be shown that its length is

L = ∫
b

a

√
[f ′(t)]2 + [g′(t)]2 + [h′(t)]2 dt

= ∫
b

a

¿
ÁÁÀ(dx

dt
)

2

+ (dy
dt

)
2

+ (dz
dt

)
2

dt

= ∫
b

a
∣r′(t)∣ dt

Definition 9.8.2: Arc Length Function

We say that two different equations of the same curve are parametrizations of the curve. We define r’s arc

length function s by

s(t) = ∫
t

a
∣r′(u)∣ du

If we differentiate both sides of this theorem of the FTC, we obtain

ds

dt
= ∣r′(t)∣

10
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It is often useful to parametrize a curve with respect to arc length because arc length arises naturally from

the shape.

Definition 9.8.3: Tangent, Normal and Binormal Vectors

T(t) = r′(t)
∥r′(t)∥ B(t) = r′(t) × r′′(t)

∥r′(t) × r′′(t)∥ N(t) = B(t) ×T(t)

r′′(t) = α(t)T(t) + β(t)N(t) α(t) = (r′ ⋅ r′′)(t)
∥r′(t)∥ β(t) = ∥(r′ × r′′)(t)∥

∥r′(t)∥ =
√

∥r′′(t)∥ − α(t)2

Definition 9.8.4: Curvature

The curvature of a curve is

κ = ∣dT
ds

∣

= ∥(r′ × r′′)(t)∥
∥r′(t)∥3

= ∥d
2r

ds2
∥

If it is in a 2D plane, than it could be written as

κ(x) = ∣f ′′(x)∣
[1 + (f ′(x))2] 3

2

Property 9.8.5: Geometric Properties of Parametric Curve Reparametrized by the Arc Length

(1)
dr

ds
= T(s)

(2)
dT

ds
= κ(s)N(s) = d

2r

ds2
with κ(s) = ∥dT

ds
∥ = ∥d

2r

ds2
∥

(3)

r(s0 +∆s) = r(s0) +∆sT(s0) +
(∆s)2

2
κ(s0)N(s0)

(4) Osculating Plane is ⊥ B(t) throughout the point r(t). In particular, r′′(t) is parallel to the Osculating

Plane at r(t). It is directed by <T(t),N(t)>.

11



MATH226 Final Review Jacob Ma

9.9 Motion in Space Velocity and Acceleration

Definition 9.9.1: Velocity and Acceleration

Velocity vector v(t) at time t:

v(t) = r′(t)

Acceleration:

a(t) = v′(t) = r′′(t)

Tangential Component:

aT = r′(t) ⋅ r′′(t)
∥r′(t)∥

Normal Component:

aN = ∥r′(t) × r′′(t)∥
∥r′(t)∥

12



Chapter 10

Partial Derivatives

10.1 Functions of Several Variables

Definition 10.1.1: Domain and Range

A function f of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a

unique real number denoted by f(x, y). The set D is the domain of f and its range is the set of values that

f takes on, that is, {f(x, y)∣(x, y) ∈D}.

Definition 10.1.2: Graph of f

If f is a function of two variables with domain D, then the graph of f is the set of all points (x, y, z) in R3

such that z = f(x, y) and (x, y) in D.

Definition 10.1.3: Level Curves

The level curves of a function f of two variables are the curves with equations f(x, y) = k, where k is a

constant (in the range of f).

10.2 Limits and Continuity

Definition 10.2.1: Limits

Let f be a function of two variables whose domain D includes points arbitrarily close to (a, b). Then we say

that the limit of f(x,y) as (x,y) approaches (a,b) is L and we write

lim
(x,y)→(a,b)

f(x, y) = L

if for every ε > 0 there is a corresponding number δ > 0 such that

if (x, y) ∈D and 0 <
√

(x − a)2 + (y − b)2 < δ then ∣f(x, y) −L∣ < ε

13
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Theorem 10.2.2: Existence of Limits

If f(x, y) → L1 as (x, y) → (a, b) along path C1 and f(x, y) → L2 as (x, y) → (a, b) along path C2, where

L1 ≠ L2, then lim(x,y)→(a,b) f(x, y) does not exist.

Definition 10.2.3: Continuity

A function f of two variables is called continuous at (a, b) if

lim
(x,y)→(a,b)

f(x, y) = f(a, b)

We say f is continuous on D is continuous at every point (a, b) in D.

Property 10.2.4

If f is defined on a subset D of R2 , then limx→a f(x) = L means that for every number ε > 0 there is a

corresponding number δ > 0 such that

if x ∈D and 0 < ∣x − a∣ < δ then ∣f(x) −L∣ < ε

10.3 Partial Derivatives

Definition 10.3.1: Partial Derivative

If f is function of two variables, its partial derivatives are the functions fx and fy defined by

fx(x, y) = lim
h→0

f(x + h, y) − f(x, y)
h

fy(x, y) = lim
h→0

f(x, y + h) − f(x, y)
h

Definition 10.3.2: Notations for Partial Derivatives

fx(x, y) = fx =
∂f

∂x
= ∂

∂x
f(x, y) = ∂z

∂x
= f1 =D1f =Dxf

fy(x, y) = fy =
∂f

∂y
= ∂

∂y
f(x, y) = ∂z

∂y
= f2 =D1f =Dyf

Theorem 10.3.3: Rule for Finding Partial Derivative of z = f(x,y)

(1) To find fx, regard y as a constant and differentiate f(x, y) with respect to x.

(2) To find fy, regard x as a constant and differentiate f(x, y) with respect to y.

14
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Theorem 10.3.4: Clairaut’s Theorem

Suppose f is defined on a disk D that contains the point (a, b). If the functions fxy and fyx are both

continuous on D, then

fxy(a, b) = fyx(a, b)

10.4 Tangent Planes and Linear Approximations

Definition 10.4.1: Tangent Plane

Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface z = f(x, y) at

the point P (x0, y0, z0) is

z − z0 = fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0)

Definition 10.4.2: Linear Approximation

The linear function whose graph is the tangent plane, namely

L(x, y) = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

is called linearization of f at (a, b) and the approximation

f(x, y) ≈ f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

is called the linear approximation or the tangent plane approximation of f at (a, b).

Definition 10.4.3: Differentiable

If z = f(x, y), then f is differentiable at (a, b) if ∆z can be expressed in the form

∆z = fx(a, b)∆x + fy(a, b)∆y + ε1∆x + ε2∆y

where ε1 and ε2 → 0 as (∆x,∆y) → (0,0).

Theorem 10.4.4

If the partial derivative fx and fy exist near (a, b) and are continuous at (a, b), then f is differentiable at

(a, b).

15



MATH226 Final Review Jacob Ma

Definition 10.4.5: Total Differential

The differential dz, also called the total differential, is defined by

dz = fx(x, y)dx + fy(x, y)dy

= ∂z
∂x
dx + ∂z

∂y
dy

10.5 The Chain Rule

Theorem 10.5.1: The Chain Rule (General Version)

Suppose that u is a differentiable function of the n variables x1, x2, ..., xn and each xj is a differentiable

function of the m variables t1, t2, ..., tm. Then u is a function of t1, t2, ..., tm and

∂u

∂ti
= ∂u

∂x1

∂x1

∂ti
+ ∂u

∂x2

∂x2

∂ti
+ ... + ∂u

∂xn

∂xn
∂ti

for each i = 1,2, ...,m.

Theorem 10.5.2: Implicit Function Theorem

The Implicit Function Theorem (Principle), gives conditions under which this assumption is valid. The

theorem guarantees the existence of a function f ∶ B(r0, a) → B(r1, b) ⊂ Rk such that

F (x, f(x)) = 0

By IFP, the following assumption holds true:

dy

dx
= −

∂F
∂x
∂F
∂y

= −Fx
Fy

zx = −
Fx
Fz

zy = −
Fy

Fz

10.6 Directional Derivatives and the Gradient Vector

Definition 10.6.1: Directional Derivative

The directional derivative of f at (x0, y0) in the direction of a unit vector u =< a, b > is

Duf(x0, y0) = lim
h→0

f(x0 + ha, y0 + hb) − f(x0, y0)
h

16
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Theorem 10.6.2: Directional Derivative

If f is a differentiable function of x and y, then f has a directional derivative in the direction of nay unit

vector u =< a, b > and

Duf(x, y) = fx(x, y)a + fy(x, y)b

Definition 10.6.3: Gradient

If f is a function of two variables x and y, then the gradient of f is the vector function ∇f defined by

∇f(x, y) =< fx(x, y), fy(x, y) >=
∂f

∂x
i + ∂f

∂y
j

With this notation for the gradient vector, the expression for the directional derivative can rewritten as

Duf(x, y) = ∇f(x, y) ⋅ u

Definition 10.6.4: Directional and Gradients of Functions of Three Variables

The directional derivatives of f at (x0, y0, z0) in the direction of a unit vector u =< a, b, c > is

Duf(x0, y0, z0) = lim
h→0

f(x0 + ha, y0 + hb, z0 + hc) − f(x0, y0, z0)
h

if this limit exists.

Duf(x0) = lim
h→0

f(x0 + hu) − f(x0)
h

For a function f with three variables, the gradient vector, denoted by ∇f or grad f is

∇f =< fx, fy, fz >=
∂f

∂x
i + ∂f

∂y
j + ∂f

∂z
k

Then, directional derivatives could be rewritten as

Duf(x, y, z) = ∇f(x, y, z) ⋅ u

Theorem 10.6.5: Maximizing the Directional Derivative

Suppose f is a differentiable function of two or three variables. The maximum value of the directional

derivative Duf(x) is ∣∇f(x)∣ and it occurs when u has the same direction as the gradient vector ∇f(x).

Definition 10.6.6: Tangent Planes to Level Surfaces

The gradient vector at P , ∇F (x0, y0, z0), is perpendicular to the tangent vector r′(t0) to any curve C on S

that passes through P.

If ∇F (x0, y0, z0) ≠ 0, it is therefore natural to define the tangent plane to the level surface F (x, y, z) = k
at P (x0, y0, z0) as the plane that passes through P and has normal vector ∇F (x0, y0, z0). We can write the
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equation of this tangent plane as

Fx(x0, y0, z0)(x − x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0

The normal line to S at P is the line passing through P and perpendicular to the tangent plane. Its

symmetric equations are
x − x0

Fx(x0, y0, z0)
= y − y0

Fy(x0, y0, z0)
= z − z0

Fz(x0, y0, z0)

10.7 Maximum and Minimum Values

Definition 10.7.1: Local Maximum/Minimum

A function of two variables has a local maximum at (a, b) if f(x, y) ⩽ f(a, b) when (x, y) is near (a, b). [This

means that f(x, y) ⩽ f(a, b) for all points (x, y) ins some disk with center (a, b)]. The number f(a, b) is

called local maximum value. If f(x, y) ⩽ f(a, b) when (x, y) is near (a, b), then f(a, b) is local minimum

value.

If the inequalities above hold for all points (x, y) in the domain of f , then f has an absolute maximum (or

absolute minimum) at (a, b).

Theorem 10.7.2: Critical Points

If f has a local maximum or minimum at point (a, b) and the first-order derivatives of f exit there, then

fx(a, b) = 0 and fy(a, b) = 0.

A point is called critical point (or stationary point) of f if fx(a, b) = 0 and fy(a, b) = 0, or if one of these

partial derivatives does not exist.

Theorem 10.7.3: Second Derivative Test

Suppose the second partial derivatives of f are continuous on a disk with center (a, b), and suppose that

fx(a, b) = 0 and fy(a, b) = 0 [that is, (a, b) is a critical point of f]. Let

D =D(a, b) = fxx(a, b)fyy(a, b) − [fxy(a, b)]2

(1) If D > 0 and fxx(a, b) > 0, then f(a, b) is a local minimum.

(2) If D > 0 and fxx(a, b) < 0, then f(a, b) is a local maximum.

(3) If D < 0, then f(a, b) is a saddle point.

(4) If D = 0, then the test is inconclusive.

18
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Theorem 10.7.4: Extreme Value Theorem for Functions of Two Variables (EVT)

If f is continous on c closed, bounded set D in R2, then f attains an absolute maximum value f(x1, y1)
and an absolute minimum value f(x2, y2) at some points (x1, y1) and (x2, y2) in D.

Theorem 10.7.5: Absolute Maximum and Minimum Values

To find the absolute maximum and minimum values of a continuous function f on a closed, bounded set D:

(1) Find the values of f at the critical points of f in D.

(2) Find the extreme values of f on the boundary of D.

(3) The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest of these

values is the absolute minimum value.

10.8 Lagrange Multipliers

Definition 10.8.1: Lagrange Multiplier

In order to maximize or minimize a general function f(x, y, z) subject to a constraint (or side condition)

of the form g(x, , y, z) = k, we have Lagrange Multiplier. Suppose f has such an extreme value at

a point P (x0, y0, z0). The gradient vectors ∇(x0, y0, z0) and ∇(x0, y0, z0) must be parallel. Therefore if

∇(x0, y0, z0) ≠ 0 , there is a number λ such that

∇f(x0, y0, z0) = λ∇g(x0, y0, z0)

The number λ is called a Lagrange Multiplier.

Theorem 10.8.2: Method of Lagrange Multiplier

To find the maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k [assuming

that these extreme values exist and ∇g ≠ 0 on the surface g(x, y, z) = k ]:

(1) Find all values of x, y, z and λ such that

∇f(x, y, z) = λ∇g(x, y, z)

and

g(x, y, z) = k

(2) Evaluate f at all the points (x,y,z) that results from step (1). The largest of these values is the maximum

value of f ; the smallest is the minimum value of f .

19



MATH226 Final Review Jacob Ma

Definition 10.8.3: Lagrange Multiplier for Two Constraints

We want to find the maximum and minimum values of a function f(x, y, z) subject to two constraints (side

conditions) of the form g(x, y, z) = k and h(x, y, z) = c. Suppose f has such an extreme value at a point

P (x0, y0, z0). So there are numbers λ and µ (called Lagrange Multiplier) such that

∇f(x0, y0, z0) = λ∇g(x0, y0, z0) + µh(x0, y0, z0)
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Chapter 11

Multiple Integrals

11.1 Double Integrals Over Rectangles

Definition 11.1.1: Riemann Sum

If f(x) is defined for a ⩽ x ⩽ b, we start by dividing the interval [a, b] into n subintervals [xi − xi−1] and we

choose sample points x∗i in the subintervals. Then we form the Riemann sum

n

∑
i=1

f(x∗i )∆xi

Definition 11.1.2: Double Integral of f over the rectangle R

The double integral of f over the rectangle R is

∬
R
f(x, y) dA = lim

max∆xi,∆yi→0

m

∑
i=1

n

∑
j=1

f(x∗ij , y∗ij)∆Aij

if this limit exists.

Property 11.1.3

If f(x, y) ⩾ 0, then the volume V of the solid that lies above the rectangle R and below the surface z = f(x, y)
is

V =∬
R
f(x, y) dA

Definition 11.1.4: Midpoint rule for double integrals

∬
R
f(x, y) dA ≈

m

∑
i=1

n

∑
j=1

f(xi, yj)∆A

where xi is the midpoint of [xi−1, xi] and yi is the midpoint of [yj−1, yj].
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Theorem 11.1.5: Fubini’s Theorem

If f is continuous on the rectangle R = {(x, y) ∣ a ⩽ x ⩽ b, c ⩽ y ⩽ d}, then

∬
R
f(x, y) dA = ∫

b

a
∫

d

c
f(x, y) dy dx

Proposition 11.1.6

∬
R
g(x)h(y) dA = ∫

b

a
g(x) dx∫

d

c
h(y) dy whereR = [a, b] × [c, d]

11.2 Double Integrals Over General Regions

Definition 11.2.1: Double Integral of f over D

We define a new function F with domain R by angular region R.

F (x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(x, y) if (x, y) is in D

0 if (x, y) is in R but not in D

If the double integral of F exists over R, then we define the double integral of f over D by

∬
D
f(x, y) dA where F is given above

Definition 11.2.2: Type I

A plane region D is said to be of type I if it lies between the graphs of two continuous functions of x, that is,

D = {(x, y) ∣ a ⩽ x ⩽ b, g1(x) ⩽ y ⩽ g2(x)}

If f is continuous on a type I region D such that

D = {(x, y) ∣ a ⩽ x ⩽ b, g1(x) ⩽ y ⩽ g2(x)}

then

∬
D
f(x, y) dA = ∫

b

a
∫

g2(x)

g1(x)
f(x, y) dy dx

Definition 11.2.3: Type II

A plane region D is said to be of type II if it lies between the graphs of two continuous functions of x, that

is,

D = {(x, y) ∣ a ⩽ x ⩽ b, h1(y) ⩽ y ⩽ h2(y)}

22



MATH226 Final Review Jacob Ma

If f is continuous on a type I region D such that

D = {(x, y) ∣ c ⩽ y ⩽ d, h1(y) ⩽ x ⩽ h2(y)}

then

∬
D
f(x, y) dA = ∫

d

c
∫

h2(y)

h1(y)
f(x, y) dx dy

Property 11.2.4

∬
D
f(x, y) dA =∬

D1

f(x, y) dA +∬
D2

f(x, y) dA

where D =D1 ∪D2, where D1 and D2 don’t overlap except perhaps on their boundaries.

∬
D

1 dA = A(D)

Theorem 11.2.5

If m ⩽ f(x, y) ⩽M for all (x, y) in D, then

mA(D) ⩽ ∬
D
f(x, y) dA ⩽MA(D)

11.3 Double Integrals In Polar Coordinates

Definition 11.3.1: Polar Rectangle

The polar coordinates (r, θ) of a point are related to rectangular coordinates (x, y) by the equations

r2 = x2 + y2 x = r cos θ y = r sin θ

A polar rectangle is

R = {(r, θ) ∣ a ⩽ r ⩽ b,α ⩽ θ ⩽ β}

Theorem 11.3.2: Change to Polar Coordinates in a Double Integral

If f is continuous on a polar rectangle R given by 0 ⩽ a ⩽ r ⩽ b,α ⩽ θ ⩽ β, where 0 ⩽ β − α ⩽ 2π, then

∬
R
f(x, y) dA = ∫

β

α
∫

b

a
f(r cos θ, r sin θ)r dr dθ

Be careful not to forget the additional factor r on the right side of Formula 2.
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Theorem 11.3.3

If f is continuous on a polar region of the form

D = {(r, θ) ∣ α ⩽ β,h1(θ) ⩽ rh2(θ)}

then

∬
D
f(x, y) dA = ∫

β

α
∫

h2(θ)

h1(θ)
f(r cos θ, r sin θ)r dr dθ

11.4 Applications of Double Integrals

Property 11.4.1: Density and Mass

We obtain the total mass m of the lamina as the limiting value of approximations:

m = lim
max∆xi,∆yj

→0

k

∑
i=1

l

∑
j=1

ρ(x∗ij , y∗ij)∆Aij =∬
D
ρ(x, y) dA

Definition 11.4.2: Moment

The moment of the entire lamina about the x-axis:

Mx = lim
max∆xi,∆yj

→0

m

∑
i=1

n

∑
j=1

y∗ijρ(x∗ij , y∗ij)∆Aij =∬
D
yρ(x, y) dA

The moment about the y-axis:

My = lim
max∆xi,∆yj

→0

m

∑
i=1

n

∑
j=1

x∗ijρ(x∗ij , y∗ij)∆Aij =∬
D
xρ(x, y) dA

Definition 11.4.3: Center of Mass

The coordinates (x, y) of the center of mass of a lamina occupying the region D and having density function

ρ(x, y) are

x = My

m
= 1

m
∬

D
xρ(x, y) dA y = Mx

m
= 1

m
∬

D
yρ(x, y) dA

where the mass m is given by

m =∬
D
ρ(x, y) dA

Definition 11.4.4: Moment of Inertia

The moment of inertia (also called the second moment) of a particle of mass m about axis is defined to be

mr2, where r is the distance from the particle to the axis.

We divide D into small rectangles, approximate the moment of inertia of each sub rectangle about the x-axis,

and take the limit of the sum as the sub rectangles become smaller. The result is the moment of the inertia
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of the lamina about the x-axis:

Ix = lim
max∆xi,∆yj

→0

m

∑
i=1

n

∑
j=1

(y∗ij)2ρ(x∗ij , y∗ij) = ∬
D
y2ρ(x, y) dA

The moment of the inertia about the y-axis:

Iy = lim
max∆xi,∆yj

→0

m

∑
i=1

n

∑
j=1

(x∗ij)2ρ(x∗ij , y∗ij) = ∬
D
x2ρ(x, y) dA

It is also of interest to consider the moment of inertia about the origin, also called the polar moment of

inertia:

I0 = lim
max∆xi,∆yj

→0

m

∑
i=1

[
n

∑
j=1

(x∗ij)2 + (y∗ij)]ρ(x∗ij , y∗ij)∆Aij

=∬
D
(x2 + y2)ρ(x, y) dA

11.5 Triple Integrals

Definition 11.5.1: Triple Integral

The triple integral of f over the box B is

∭
B
f(x, y, z) dV = lim

l,m,n→∞

l

∑
i=1

,

∑
j=1

n

∑
k=1

f(xi, yk, zk)∆V

Theorem 11.5.2: Fubini’s Theorem for Triple Integrals

If f is continuous on the rectangular box B = [a, b] × [c, d] × [r, s], then

∭
B
f(x, y, z) dV = ∫

s

r
∫

d

c
∫

b

a
f(x, y, z) dx dy dz

Definition 11.5.3: Triple Integral Over a General Bounded Region E

We define the triple integral over a general bounded region E in three dimensional space. We enclose

E in a box B. Then we define a function F so that it agrees with f on E but is 0 for points in B that are

outside E. By definition,

∭
E
f(x, y, z) dV =∭

B
F (x, y, z) dV
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Definition 11.5.4: Type 1

A solid region E is said to be type 1 if it lies between the graphs of two continuous functions of x and y, that

is,

E = {(x, y, z) ∣ (x, y) ∈D,u1(x, y) ⩽ z ⩽ u2(x, y)}

It can be shown that if E is a type 1 region, then

∭
E
f(x, y, z) dV =∬

D
[∫

u2(x,y)

u1(x,y)
f(x, y, z) dz] dA

In particular, if the projection D of E onto the xy-plane is a type I plane region, then

E = {(x, y, z) ∣ a ⩽ x ⩽ b, g1(x) ⩽ y ⩽ g2(x), u1(x, y) ⩽ z ⩽ u2(x, y)}

and the equation becomes

∭
E
f(x, y, z) dV = ∫

b

a
∫

g2(x)

g1(x)
∫

u2(x,y)

u1(x,y)
f(x, y, z) dz dy dx

If, on the other hand, D is a type II plane region, then

E = {(x, y, z) ∣ c ⩽ y ⩽ d, h1(y) ⩽ x ⩽ h2(y), u1(x, y) ⩽ z ⩽ u2(x, y)}

and the equation becomes

∭
E
f(x, y, z) dV = ∫

d

c
∫

h2(y)

h1(y)
∫

u2(x,y)

u1(x,y)
f(x, y, z) dz dx dy

Definition 11.5.5: Type 2

A solid region of type 2 if it is of the form

E = {(x, y, z) ∣ (y, z) ∈D,u1(y, z) ⩽ x ⩽ u2(y, z)}

where, this time, D is the projection of E onto the yz-plane. The back surface is x = u1(y, z), the front

surface is x = u2(y, z), and we have

∭
E
f(x, y, z) dV =∬

D
[∫

u2(y,z)

u1(y,z)
f(x, y, z) dx] dA

Definition 11.5.6: Type 3

A solid region of type 3 if it is of the form

E = {(x, y, z) ∣ (x, z) ∈D,u1(x, z) ⩽ y ⩽ u2(x, z)}
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where, this time, D is the projection of E onto the yz-plane. The back surface is x = u1(y, z), the front

surface is x = u2(y, z), and we have

∭
E
f(x, y, z) dV =∬

D
[∫

u2(x,z)

u1(x,z)
f(x, y, z) dy] dA

Property 11.5.7: Application of Triple Integrals

The special case where f(x, y, z) = 1 for all points in E. Then all the triple integral does represent the volume

of E :

V (E) =∭
E

dV

11.6 Triple Integral Coordinates

Definition 11.6.1: Cylinder Coordinates

To convert from cylindrical to rectangular coordinates, we use the equation

x = r cos θ y = r sin θ z = z

wheres to convert from rectangular to cylindrical coordinates, we use

r2 = x2 + y2 tan θ = y
x

z = z

Theorem 11.6.2: Formula for Triple Integration in Cylindrical Coordinates

This formula says that we convert a triple integral rectangular to cylindrical coordinates by writing x =
r cos θ, y = r sin θ, leaving z as it is, using the appropriate limits of integration for z, r and θ, and replacing

dV by rdzdrdθ.

∭
E
f(x, y, z) dV = ∫

β

α
∫

h2(θ)

h1(θ)
∫

u2(r cos θ,r sin θ)

u1(r cos θ,r sin θ)
f(r cos θ, r sin θ, z)r dz dr dθ

11.7 Triple Integrals in Spherical Coordinates

Definition 11.7.1: Spherical Coordinates

The spherical coordinates (ρ, θ, φ of a point P in space, where ρ = ∣OP ∣ is the distance from the origin to

P ,θ is the same angle as in cylindrical coordinates, and φ is the angle between the positive z-axis and the

line segment OP . Note that

ρ ⩽ 0 0 ⩽ φ ⩽ π
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We use the equation below to convert from rectangular to spherical coordinates

x = ρ sinφ cos θ y = ρ sinφ sin θ z = ρ cosφ

Also, the formula shows that

ρ2 = x2 + y2 + z2

Definition 11.7.2: Spherical Wedge

In the spherical coordinate system the counterpart of a rectangular box is a spherical wedge

E = {(ρ, θ, φ) ∣ a ⩽ ρ ⩽ b,α ⩽ θ ⩽ β, c ⩽ φ ⩽ d}

Theorem 11.7.3

∭
E
f(x, y, z) dV = ∫

d

c
∫

β

α
∫

b

a
f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 dρ dθ dφ

11.8 Change of Variables in Multiple Integrals

Definition 11.8.1: Transformation

We consider a change of variables that is given by a transformation T from the uv-plane to the xy-plane:

T (u, v) = (x, y)

where x and y are related to u and v by the equations

x = g(u, v) y = h(u, v)

or, as we sometimes write

x = x(u, v) y = y(u, v)

We usually assume that T is a C1 transformation, which means that g and h have continuous first-order

partial derivatives.

If T is a one-to-one transformation, then it has an inverse transformation T −1 from the xy-plane to the

uv-plane and it may be possible to solve the equation for u and v in terms of x and y :

u = G(x, y) v =H(x, y)
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Definition 11.8.2: Jacobian

The Jacobian of the transformation T given by x = g(u, v) and y = h(u, v) is

∂(x, y)
∂(u, v) =

RRRRRRRRRRRRRRRRRR

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

RRRRRRRRRRRRRRRRRR

= ∂x
∂u

∂y

∂v
− ∂x
∂v

∂y

∂u

Theorem 11.8.3: Change of Variables in a Double Integral

Suppose that T is a C1 transformation whose Jacobian is nonzero and that maps a region S in the uv-plane

onto a region R in the xy-plane. Suppose that f is continuous on R and that R and S are type I or type II

regions. Suppose also that T is one-to-one, except perhaps on the boundary of S. Then

∬
R
f(x, y) dA =∬

S
f(x(u, v), y(u, v))∣∂(x, y)

∂(u, v) ∣ dudv

Definition 11.8.4: Jacobian of Triple Integral

The Jacobian of T is a 3 × 3 determinant. We have the following formula for triple integrals:

∭
R
f(x, y, z) dV

=∭
S
f(f(u, v,w), y(u, v,w), z(u, v,w))∣ ∂(x, y, z)

∂(u, v,w) ∣ dudvdw
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Chapter 12

Vector Calculus

12.1 Vector Fields

Definition 12.1.1: Vector Field on R2

Let D be a set in R2 (a plane region). A vector field on R2 is a function F that assigns to each point (x, y)
in D a two-dimensional vector F(x, y).

Definition 12.1.2: Vector Field on R3

Let E be a subset of R3. A vector field on R3 is a function F that assigns to each point (x, y, z) in E a

three-dimensional vector F(x, y, z).

12.2 Line Integrals

Definition 12.2.1: Line Integral of f along C

If f is defined on a smooth curve C given by

x = x(t) y = y(t) a ⩽ t ⩽ b

then the line integral of f along C is

∫
C
f(x, y) ds = lim

max∆si→0

n

∑
i=1

f(x∗i , y∗i )∆si

if this limit exists.

Property 12.2.2: Use Length of C to evaluate

∫
C
f(x, y) ds = ∫

b

a
f(x(t), y(t))

√
(dx
dt

)2 + (dy
dt

)2 dt
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Definition 12.2.3: Line Integral with respect to x and y

∫
C
f(x, y) dx = ∫

b

a
f(x(t), y(t))x′(t) dt

∫
C
f(x, y) dy = ∫

b

a
f(x(t), y(t))y′(t) dt

Definition 12.2.4: Line Integral of Vector Fields

Let F be a continuous vector field defined on a smooth curve C given by a vector function r(t), a ⩽ t ⩽ b.
Then the line integral of F along C is

∫
C
F ⋅ dr = ∫

b

a
F(r(t)) ⋅ r′(t) ds = ∫

C
F ⋅T ds

Property 12.2.5

∫
C
F ⋅ dr = ∫

C
P dx +Qdy +Rdz where F = P i +Qk +Rk

12.3 The Fundamental Theorem for Line Integrals

Theorem 12.3.1: The Fundamental Theorem of Calculus

∫
b

a
F ′(x) dx = f(r(b)) − f(r(a))

Theorem 12.3.2: The Fundamental Theorem for Line Integrals

Let C be a smooth curve given by the vector function r(t), a ⩽ t ⩽ b. Let f be a differentiable function of two

or three variables whose gradient vector ∇f is continuous on C. Then

∫
C
∇f ⋅ dr = f(r(b)) − f(r(a))

Theorem 12.3.3: Independent of Path

∫C F ⋅ dr is independent of path in D if and only if ∫C F ⋅ dr = 0 for every closed path C in D.

Theorem 12.3.4

Suppose F is a vector field that is continuous on an open connected region D. If ∫C F ⋅ dr is independent of

path in D, then F is a conservative vector filed on D; that is, there exists a function f such that ∇f = F.
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Theorem 12.3.5

If F(x, y) = P (x, y)i + Q(x, y)j is a conservative vector field, where P and Q have continuous first-order

partial derivatives on a domain D, then throughout D we have

∂P

∂y
= ∂Q
∂x

Theorem 12.3.6: Test Conservative

Let F = P i + Qj be a vector field on an open simply-connected region D. Suppose that P and Q have

continuous first-order derivatives and

∂P

∂y
= ∂Q
∂x

throughout D

Then F is conservative.

12.4 Green’s Theorem

Theorem 12.4.1: Green’s Theorem

Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region

bounded by C. If P and Q have continuous partial derivatives on an open region that contains D, then

∫
C
Pdx +Q dy =∬

D
(∂P
∂x

− ∂P
∂y

) dA

Property 12.4.2

The Green’s Theorem gives the following formulas for the area of D:

A = ∮
C
x dy = −∮

C
y dx = 1

2
∮
C
x dy − y dx
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12.5 Curl and Divergence

Definition 12.5.1: Curl

If F = P i +Qj +Rk is a vector field on R3 and the partial derivative of P,Q, and R all exist, then the curl of

F is the vector field on R3 defined by

curl F = (∂R
∂y

− ∂Q
∂z

) i + (∂P
∂z

− ∂R
∂x

) j + (∂Q
∂x

− ∂P
∂y

) k

Remember the definition by means of the symbolic expression:

curl F = ∇ ×F

Theorem 12.5.2

If f is a function of three variables that has continuous second-order partial derivatives, then

curl(∇f) = 0

Theorem 12.5.3

If F is a vector field defined on all of R3 whose components functions have continuous partial derivatives

and curl F = 0, then F is a conservative vector field.

Definition 12.5.4: Divergence of F

If F = P i +Qj +Rk is a vector on R3 and ∂P
∂x
, ∂Q
∂y
, and∂R

∂z
exist, then the divergence of F is the function of

three variables defined by

div F = ∂P
∂x

+ ∂Q
∂y

+ ∂R
∂z

In terms of the gradient operator, the divergence of F can be written symbolically:

div F = ∇ ⋅F

Theorem 12.5.5

If F = P i+Qj+Rk is a vector field on R3 and P,Q, and R have continuous second-order partial derivatives,

then

div curl F = 0

Theorem 12.5.6: Vector Forms of Green’s Theorem

∮
C
F dr =∬

D
(curl F) ⋅ k dA
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A second vector form of Green’s Theorem:

∮
C
F ⋅ n dt =∬

D
div F(x, y) dA

12.6 Parametric Surface and Their Areas

Definition 12.6.1: Parametric Surface

We suppose that

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k

is a vector-valued function defined on a region D in the uv-plane. So x, y, and z, the component functions

of r , are functions of the two variables u and v with domain D. The set of all points (x, y, z) in R3 such that

x = x(u, v) y = y(u, v) z = z(u, v)

and (u, v) varies throughoutD, is called parametric surface S and the second equation is called parametric

equations of S.

Definition 12.6.2: Parametric Surface

If a smooth parametric surface S is given by the equation

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k (u, v) ∈D

and S is covered just once as (u, v) ranges throughout the parameter domain D, then the surface area of S

is

A(S) = ∬
D
∣ru × rv ∣ dA

where

ru =
∂x

∂u
i + ∂y

∂u
j + ∂z

∂u
k rv =

∂x

∂v
i + ∂y

∂v
j + ∂z

∂v
k

Definition 12.6.3: Surface Area Formula

A(S) = ∬
D

¿
ÁÁÀ1 + (∂z

∂x
)

2

+ (∂z
∂y

)
2

dA
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12.7 Surface Integrals

Definition 12.7.1: Surface Integral of f over the surface S

∬
S
f(x, y, z) dS = lim

max ∆ui,∆vj→0

m

∑
i=1

n

∑
j=1

f(P ∗

ij)∆Sij

If the components are continuous, and ru, rv are nonzero and nonparallel in the interior of D, it can be

shown from Definition 1, even when D is not a rectangle, that

∬
S
f(x, y, z) dS =∬

S
f(r(u, v))∣ru × rv ∣ dA

Observe also that

∬
S

1 dS =∬
S
∣ru × rv ∣ dA
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Definition 12.7.2: Surface Integrals in Graph point of view

An surface S with the equation z = g(x, y) can be regarded as a parametric surface with parametric equation

x = x y = y z = g(x, y)

and so we have

rx = i + (∂g
∂x

)k ry = j + (∂g
∂y

)k

Thus

rx × ry = −
∂g

∂x
− ∂g
∂y

j + k

and

∣rx × ry ∣ =

¿
ÁÁÀ(∂z

∂x
)

2

+ (∂z
∂y

)
2

+ 1

Therefore, in this case, Formula 2 becomes

∬
S
f(x, y, z) dS =∬

D
f(x, y, g(x, y))

¿
ÁÁÀ(∂z

∂x
)

2

+ (∂z
∂y

)
2

+ 1 dA

Definition 12.7.3: Surface Integral in Oriented Surfaces

For a surface z = g(x, y) given as the graph of g, we use Equation 3 to associate with the surface a natural

orientation given by the unit normal vector

n = rx × ry

∣rx × ry ∣
=

−∂g
∂x

i − ∂g
∂y

j + k

¿
ÁÁÀ1 + (∂g

∂x
)

2

+ (∂g
∂y

)
2

Definition 12.7.4: Surface Integral of Vector Fields

If F is a continuous vector field defined on an oriented surface S with unit vector n, then the surface integral

of F over S is

∬
S
F ⋅ dS =∬

S
F ⋅ n dS
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This integral is also called the flux of F across S.

If S is given by a vector function r(u, v), then n is given by Equation 6, we have

∬
S
F ⋅ dS =∬

D
F ⋅ (ru × rv) dA

In the case of a surface S given by a graph z = g(x, y), we can think of x and y as parameters and use

Equation 3 to write

F ⋅ (rx × ry) = (P i +Qj +Rk) ⋅ ( − ∂g
∂x

i − ∂g
∂y

j + k)

Thus Surface integrals of vector fields in graph point of view is

∬
S
D ⋅ dS =∬

S
( − P ∂g

∂x
−Q∂g

∂y
+R) dA

12.8 Stoke’s Theorem

Theorem 12.8.1: Stoke’s Theorem

Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth bound-

ary curve C with positive orientation. Let F be a vector field whose components have continuous partial

derivatives on an open region in R3 that contains S. Then

∫
C
F ⋅ dr =∬

S
curlF ⋅ dS
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12.9 The Divergence Theorem

Theorem 12.9.1: The Divergence Theorem

Let E be a simple solid region and let S be the boundary surface of E, given with positive (outward)

orientation. Let F be a vector field whose component functions have continuous partial derivatives on an

open region that contains E. Then

∬
S
F ⋅ dS =∭

E
divF dV
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