MATH226

Jacob Ma

May 2022

Contents

Conten	ts	1
9.1	Three-Dimensional Coordinate Systems	2
9.2	Vectors	2
9.3	The Dot Product	3
9.4	The Cross Product	4
9.5	Equations of Lines and Planes	5
9.6	Cylinders and Quadric Surfaces	7
9.7	Vector Functions and Space Curves	9
9.8	Arc Length and Curvature	10
9.9	Motion in Space Velocity and Acceleration	12
10 Part	ial Derivatives	13
10.1	Functions of Several Variables	13
10.2	Limits and Continuity	13
10.3	Partial Derivatives	14
10.4	Tangent Planes and Linear Approximations	15
10.5	The Chain Rule	16
10.6	Directional Derivatives and the Gradient Vector	16
10.7	' Maximum and Minimum Values	18
10.8	Lagrange Multipliers	19
11 Mul	tiple Integrals	21
	Double Integrals Over Rectangles	
	2 Double Integrals Over General Regions	
11.4		

	11.3 Double Integrals In Polar Coordinates	23
	11.4 Applications of Double Integrals	24
	11.5 Triple Integrals	25
	11.6 Triple Integral Coordinates	27
	11.7 Triple Integrals in Spherical Coordinates	27
	11.8 Change of Variables in Multiple Integrals	28
12	Vector Calculus	30
	12.1 Vector Fields	30
	12.2 Line Integrals	30
	12.3 The Fundamental Theorem for Line Integrals	31
	12.4 Green's Theorem	32
	12.5 Curl and Divergence	33
	12.6 Parametric Surface and Their Areas	34
	12.7 Surface Integrals	35
	12.8 Stoke's Theorem	37
	12.9 The Divergence Theorem	38

9.1 Three-Dimensional Coordinate Systems

Theorem 9.1.1: Distance Formula in Three Dimensions

The distance $|P_1P_2|$ between the points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is

 $|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

Theorem 9.1.2: Equation of a Square

An equation of a sphere with center C(h, k, l) and radius r is

$$(x-h)^{2} + (y-h)^{2} + (z-l)^{2} = r^{2}$$

In particular, if the center is the origin *O*, then an equation of the sphere is

 $x^2 + y^2 + z^2 = r^2$

9.2 Vectors

Definition 9.2.1: Vector Addition

If **u** and **v** are vectors positioned so the initial point of **v** is at the terminal point of **u**, then the **sum of u + v** is the vector from the initial point of **u** to the terminal point of **v**.

Definition 9.2.2: Scalar Multiplication

If c is a scalar and vis a vector, then the scalar multiple cv is the vector whose length is |c| times the length of **v** and whose direction is the same as **v** if c > 0 and is opposite to v if c < 0. If c = 0 or v = 0, then c**v** = **0**.

Corollary 9.2.3

The length of the two-dimensional vector $\mathbf{a} = \langle a_1, a_2 \rangle$ is

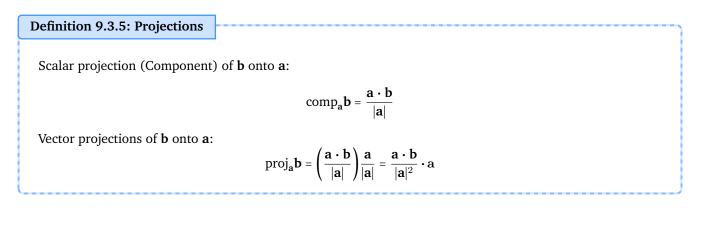
$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2}$$

The length of the three-dimensional vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is

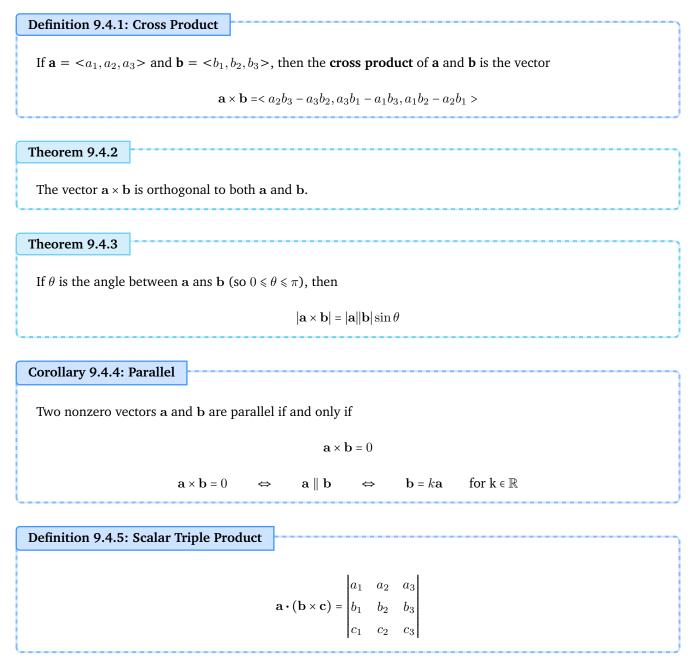
$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

9.3 The Dot Product

Definition 9.3.1: Dot Produ	*				
Demintion 9.5.1. Dot Fload					
If $\mathbf{a} = \langle s_1, a_2, a_3 \rangle$ and $\mathbf{b} \langle b_1, b_2, b_3 \rangle$, then the dot product of \mathbf{a} and \mathbf{b} is the number $\mathbf{a} \cdot \mathbf{b}$ given by					
$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$					
Theorem 9.3.2					
If θ is the angle between the vectors a and b , then					
$\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \mathbf{b} \cos\theta$					
Corollary 9.3.3					
Coronary 7.5.5					
If θ is the angle between the nonzero vectors a and b , then					
	a.h				
	$\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} }$				
	ושווטו				
Theorem 9.3.4: Orthogonal					
Two vectors a and b are orthogonal if and only if $a \cdot b = 0$.					
$\mathbf{u} \perp \mathbf{v} \Leftrightarrow \ \mathbf{u} + \mathbf{v}\ ^2 = \ \mathbf{u}\ ^2 + \ \mathbf{v}\ ^2$					
3					



9.4 The Cross Product



Property 9.4.6: Area and Volumes

Area of parallelogram:

 $A_{\text{parallelogram}} = \|\mathbf{a} \times \mathbf{b}\|$

Volume of parallelepiped determined by the vectors **a**, **b**, and **c**, is the magnitude of their scalar triple product:

 $V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$

If the volume of the parallelepiped determined by $\mathbf{a}, \mathbf{b}, \mathbf{c}$ is 0, then the vectors must lie in the same plane; that is, they are **coplanar**,

Property 9.4.7: Directing and Normal Vector

If a line in \mathbb{R}^2 is directed by $\mathbf{u} < \alpha, \beta >$, then $\mathbf{n} < -\beta, \alpha >$ is a vector \bot to this line.

 $\mathbf{u}\boldsymbol{\cdot}\mathbf{n}=0\Leftrightarrow\mathbf{u}\perp\mathbf{n}$

9.5 Equations of Lines and Planes

Definition 9.5.1: Vector Equation

The vector equation of L. Each value of the parameter t gives the position vector \mathbf{r} of a point on L.

 $\mathbf{r} = \mathbf{r_0} + t\mathbf{v}$

Definition 9.5.2: Parametric Equation of *L*

Parametric equation of the line *L* through the point $P_0(x_0, y_0, z_0)$ and parallel to the vector $\mathbf{v} = \langle a, b, c \rangle$. Each value of the parameter *t* gives a point (x, y, z) on *L*.

 $x = x_0 + at$ $y = y_0 + bt$ $z = z_0 + ct$

The numbers a, b, c are called **direction numbers** of L.

Definition 9.5.3: Symmetric Equations of L

The following equation is called **Symmetric Equations** of *L* through the point $P_0(x_0, y_0, z_0)$ and parallel to the vector $\mathbf{v} = \langle a, b, c \rangle$.

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

Definition 9.5.4: Line Segment

The line segment from \mathbf{r}_0 to \mathbf{r}_1 is given by the vector equation

 $\mathbf{r} = (1 - t)\mathbf{r_0} + t\mathbf{r_1}$

Definition 9.5.5: Vector Equation of the Plane

A plane in space is determined by a point $P_0(x_0, y_0, z_0)$ in the plane and a vector that is orthogonal to the plane. This orthogonal vector **n** is called a **normal vector**.

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r_0}) = 0$$

which can be rewritten as

 $\mathbf{n}\boldsymbol{\cdot}\mathbf{r}=\mathbf{n}\boldsymbol{\cdot}\mathbf{r}_0$

Definition 9.5.6: Scalar Equation of Plane

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

This is the Scalar Equation of the plane through $P_0(x_0, y_0, z_0)$ with normal vector $n = \langle a, b, c \rangle$

Definition 9.5.7: Linear Equation of Plane

ax + by + cz + d = 0

where $d = -(ax_0 + by_0 + cz_0)$. This is called a **linear equation** in x, y, z.

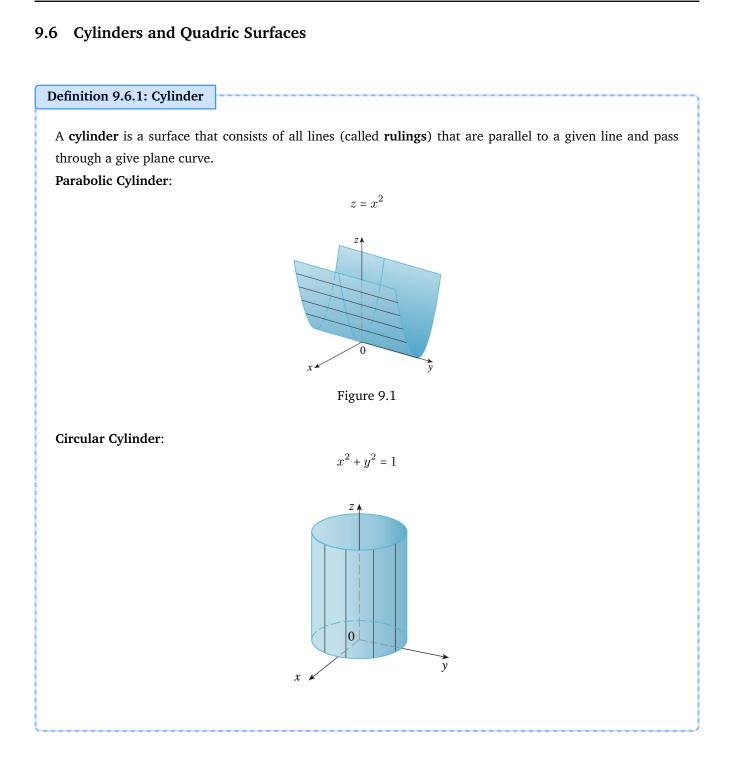
For such an equation, **normal vector** is $\langle a, b, c \rangle$.

Two planes are **parallel** if their normal vectors are parallel.

Theorem 9.5.8: Distance from Point to Plane

The distance D from a point $P_1(x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0 is

 $D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$



Definition 9.6.2: Quadric Surfaces

A **quadric surface** is the graph of a second-degree equation in three variables x, y, and z. It can be brought into one of the two standard forms

 $Ax^{2} + By^{2} + Cz^{2} + J = 0$ $Ax^{2} + By^{2} + Iz = 0$

Property 9.6.3: Graph of Quadric Surfaces

Ellipsoid:	
-	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
Cone:	2 2 2
	$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$
Elliptic Paraboloid:	2
	$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$
Hyperbolic Paraboloid:	2 2
	$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$
Hyperboloid of One Sheet:	
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$
Hyperboloid of Two Sheets:	
	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Surface	Equation	Surface	Equation
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ All traces are ellipses. If $a = b = c$, the ellipsoid is a sphere.	Cone	$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces in the planes x = k and $y = k$ are hyperbolas if $k \neq 0$ but are pairs of lines if $k = 0$.
Elliptic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces are parabolas. The variable raised to the first power indicates the axis of the paraboloid.	Hyperboloid of One Sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Horizontal traces are ellipses. Vertical traces are hyperbolas. The axis of symmetry corresponds to the variable whose coefficient is negative.
Hyperbolic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$ Horizontal traces are hyperbolas. Vertical traces are parabolas. The case where $c < 0$ is illustrated.	Hyperboloid of Two Sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Horizontal traces in $z = k$ are ellipses if $k > c$ or $k < -c$. Vertical traces are hyperbolas. The two minus signs indicate two sheets.

9.7 Vector Functions and Space Curves

A vector-valued function, or vector function, is simply a function whose domain is a set of real numbers and whose range is a set of vectors. If f(t), g(t), h(t) are components of the vector $\mathbf{r}(t)$, then f, g, h are real-valued functions called **component functions** of \mathbf{r} and we can write

$$\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$$

Theorem 9.7.1: Limit of Vector Function

If $r(t) = \langle f(t), g(t), h(t) \rangle$, then

$$\lim_{t \to a} \mathbf{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle$$

provided the limits of the component functions exist.

A function **r** is **continuous at** a if

$$\lim_{t\to a}\mathbf{r}(t)=\mathbf{r}(a)$$

Definition 9.7.2: Space Curve

The set C of all points (x, y, z) in space, where

$$x = f(t)$$
 $y = g(t)$ $z = h(t)$

and t varies throughout the interval I, is called a **space curve**. The equations are called **parametric equations of** C and t is called a **parameter**.

Definition 9.7.3: Derivative r'

The **derivative r'** of a vector function **f** is defined:

$$\frac{d\mathbf{r}}{dt} = \mathbf{r}' = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$$

Theorem 9.7.4

If $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, where f, g, h are differentiable functions, then

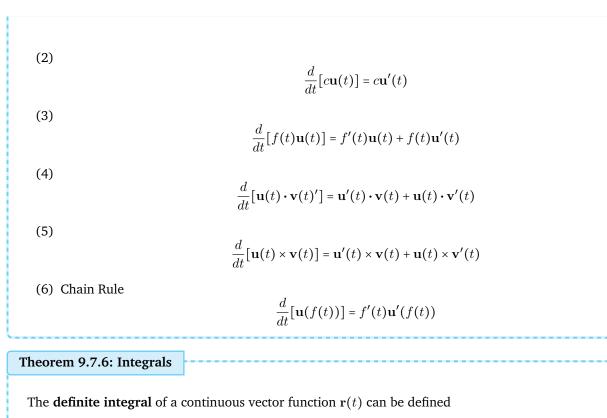
$$\mathbf{r}'(t) \coloneqq f'(t), g'(t), h'(t) \coloneqq f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k}$$

Theorem 9.7.5: Differentiation Rules

Suppose \mathbf{u} and \mathbf{v} are differentiable vector functions, c is a scalar, and f is a real-valued function. Then

(1)

$$\frac{d}{dt}[\mathbf{u}(t) + \mathbf{v}(t)] = \mathbf{u}'(t) + \mathbf{v}'(t)$$



$$\int_{a}^{b} \mathbf{r}(t) \, \mathrm{d}t = \Big(\int_{a}^{b} f(t) \, \mathrm{d}t\Big) \mathbf{i} + \Big(\int_{a}^{b} g(t) \, \mathrm{d}t\Big) \mathbf{j} + \Big(\int_{a}^{b} h(t) \, \mathrm{d}t\Big) \mathbf{k}$$

9.8 Arc Length and Curvature

Theorem 9.8.1: Arc Length

If the curve is traversed exactly once as t increases from a to b, then it can be shown that its length is

$$L = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2} + [h'(t)]^{2}} dt$$
$$= \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt$$
$$= \int_{a}^{b} |\mathbf{r}'(t)| dt$$

Definition 9.8.2: Arc Length Function

We say that two different equations of the same curve are **parametrizations** of the curve. We define **r**'s **arc length function** s by

$$s(t) = \int_{a}^{t} |\mathbf{r}'(u)| \, \mathrm{d}u$$

If we differentiate both sides of this theorem of the FTC, we obtain

$$\frac{ds}{dt} = |\mathbf{r}'(t)|$$

It is often useful to **parametrize a curve with respect to arc length** because arc length arises naturally from the shape.

Definition 9.8.3: Tangent, Normal and Binormal Vectors

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} \qquad \mathbf{B}(t) = \frac{\mathbf{r}'(t) \times \mathbf{r}''(t)}{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|} \qquad \mathbf{N}(t) = \mathbf{B}(t) \times \mathbf{T}(t)$$

$$\mathbf{r}''(t) = \alpha(t)\mathbf{T}(t) + \beta(t)\mathbf{N}(t) \qquad \alpha(t) = \frac{(\mathbf{r}' \cdot \mathbf{r}'')(t)}{\|\mathbf{r}'(t)\|} \qquad \beta(t) = \frac{\|(\mathbf{r}' \times \mathbf{r}'')(t)\|}{\|\mathbf{r}'(t)\|} = \sqrt{\|\mathbf{r}''(t)\| - \alpha(t)^2}$$

Definition 9.8.4: Curvature

The **curvature** of a curve is

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right|$$
$$= \frac{\| (\mathbf{r}' \times \mathbf{r}'')(t) \|}{\| \mathbf{r}'(t) \|^3}$$
$$= \left\| \frac{d^2 r}{ds^2} \right\|$$

If it is in a 2D plane, than it could be written as

$$\kappa(x) = \frac{|f''(x)|}{[1 + (f'(x))^2]^{\frac{3}{2}}}$$

Property 9.8.5: Geometric Properties of Parametric Curve Reparametrized by the Arc Length
(1)

$$\frac{d\mathbf{r}}{ds} = \mathbf{T}(s)$$
(2)

$$\frac{d\mathbf{T}}{ds} = \kappa(s)\mathbf{N}(s) = \frac{d^{2}\mathbf{r}}{ds^{2}} \quad \text{with} \quad \kappa(s) = \left\|\frac{d\mathbf{T}}{ds}\right\| = \left\|\frac{d^{2}\mathbf{r}}{ds^{2}}\right\|$$
(3)

$$\mathbf{r}(s_{0} + \Delta_{s}) = \mathbf{r}(s_{0}) + \Delta s \mathbf{T}(s_{0}) + \frac{(\Delta s)^{2}}{2}\kappa(s_{0})\mathbf{N}(s_{0})$$
(4) Osculating Plane is $\perp \mathbf{B}(t)$ throughout the point $\mathbf{r}(t)$. In particular, $\mathbf{r}''(t)$ is parallel to the Osculating

Plane at $\mathbf{r}(t)$. It is directed by $\langle \mathbf{T}(t), \mathbf{N}(t) \rangle$.

9.9 Motion in Space Velocity and Acceleration

Definition 9.9.1: Velocity and Acceleration	
Velocity vector $v(t)$ at time t :	
	$\mathbf{v}(t) = \mathbf{r}'(t)$
Acceleration:	
а	$\mathbf{u}(t) = \mathbf{v}'(t) = \mathbf{r}''(t)$
Tangential Component:	$\mathbf{r}'(t) \cdot \mathbf{r}''(t)$
	$a_T = \frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{\ \mathbf{r}'(t)\ }$
Normal Component:	$\ \mathbf{r}'(t) imes\mathbf{r}''(t)\ $
a_{\cdot}	$_{N} = \frac{\ \mathbf{r}'(t) \times \mathbf{r}''(t)\ }{\ \mathbf{r}'(t)\ }$

Chapter 10

Partial Derivatives

10.1 Functions of Several Variables

Definition 10.1.1: Domain and Range

A function f of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by f(x, y). The set D is the **domain** of f and its **range** is the set of values that f takes on, that is, $\{f(x, y) | (x, y) \in D\}$.

Definition 10.1.2: Graph of f

If *f* is a function of two variables with domain *D*, then the **graph** of *f* is the set of all points (x, y, z) in \mathbb{R}^3 such that z = f(x, y) and (x, y) in *D*.

Definition 10.1.3: Level Curves

The **level curves** of a function f of two variables are the curves with equations f(x, y) = k, where k is a constant (in the range of f).

10.2 Limits and Continuity

Definition 10.2.1: Limits

Let f be a function of two variables whose domain D includes points arbitrarily close to (a, b). Then we say that the **limit of** f(x, y) as (x, y) approaches (a, b) is L and we write

$$\lim_{(x,y)\to(a,b)}f(x,y)=L$$

if for every $\epsilon > 0$ there is a corresponding number $\delta > 0$ such that if $(x, y) \in D$ and $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$ then $|f(x, y) - L| < \epsilon$

Theorem 10.2.2: Existence of Limits

If $f(x,y) \to L_1$ as $(x,y) \to (a,b)$ along path C_1 and $f(x,y) \to L_2$ as $(x,y) \to (a,b)$ along path C_2 , where $L_1 \neq L_2$, then $\lim_{(x,y)\to(a,b)} f(x,y)$ does not exist.

Definition 10.2.3: Continuity

A function f of two variables is called **continuous at** (a, b) if

$$\lim_{(x,y)\to(a,b)}f(x,y)=f(a,b)$$

We say f is **continuous on** D is continuous at every point (a, b) in D.

Property 10.2.4

If f is defined on a subset D of \mathbb{R}^2 , then $\lim_{x\to a} f(\mathbf{x}) = L$ means that for every number $\epsilon > 0$ there is a corresponding number $\delta > 0$ such that

if $\mathbf{x} \in D$ and $0 < |\mathbf{x} - \mathbf{a}| < \delta$ then $|f(\mathbf{x}) - L| < \epsilon$

10.3 Partial Derivatives

Definition 10.3.1: Partial Derivative

If f is function of two variables, its **partial derivatives** are the functions f_x and f_y defined by

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$
$$f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

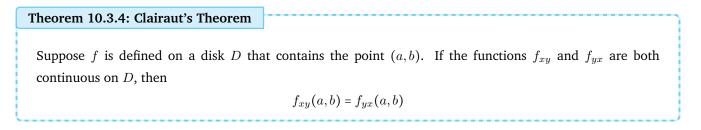
Definition 10.3.2: Notations for Partial Derivatives

$$f_x(x,y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x}f(x,y) = \frac{\partial z}{\partial x} = f_1 = D_1 f = D_x f$$
$$f_y(x,y) = f_y = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y}f(x,y) = \frac{\partial z}{\partial y} = f_2 = D_1 f = D_y f$$

Theorem 10.3.3: Rule for Finding Partial Derivative of z = f(x, y)

(1) To find f_x , regard y as a constant and differentiate f(x, y) with respect to x.

(2) To find f_y , regard x as a constant and differentiate f(x, y) with respect to y.



10.4 Tangent Planes and Linear Approximations

Definition 10.4.1: Tangent Plane

Suppose *f* has continuous partial derivatives. An equation of the **tangent plane** to the surface z = f(x, y) at the point $P(x_0, y_0, z_0)$ is

 $z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$

Definition 10.4.2: Linear Approximation

The linear function whose graph is the tangent plane, namely

 $L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$

is called **linearization** of f at (a, b) and the approximation

 $f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$

is called the **linear approximation** or the **tangent plane approximation** of f at (a, b).

Definition 10.4.3: Differentiable

If z = f(x, y), then f is **differentiable** at (a, b) if Δz can be expressed in the form

 $\Delta z = f_x(a,b)\Delta x + f_y(a,b)\Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$

where ϵ_1 and $\epsilon_2 \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow (0, 0)$.

Theorem 10.4.4

If the partial derivative f_x and f_y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

Definition 10.4.5: Total Differential

The differential dz, also called the total differential, is defined by

$$dz = f_x(x, y)dx + f_y(x, y)dy$$
$$= \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$

10.5 The Chain Rule

Theorem 10.5.1: The Chain Rule (General Version)

Suppose that u is a differentiable function of the n variables $x_1, x_2, ..., x_n$ and each x_j is a differentiable function of the m variables $t_1, t_2, ..., t_m$. Then u is a function of $t_1, t_2, ..., t_m$ and

$$\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \ldots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

for each i = 1, 2, ..., m.

Theorem 10.5.2: Implicit Function Theorem

The **Implicit Function Theorem (Principle)**, gives conditions under which this assumption is valid. The theorem guarantees the existence of a function $f : B(r_0, a) \to B(r_1, b) \subset \mathbb{R}^k$ such that

$$F(x, f(x)) = 0$$

By IFP, the following assumption holds true:

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{F_x}{F_y}$$
$$z_x = -\frac{F_x}{F_z} \qquad z_y = -\frac{F_y}{F_z}$$

10.6 Directional Derivatives and the Gradient Vector

Definition 10.6.1: Directional Derivative
The **directional derivative** of *f* at
$$(x_0, y_0)$$
 in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is
 $D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$

Theorem 10.6.2: Directional Derivative

If *f* is a differentiable function of *x* and *y*, then *f* has a directional derivative in the direction of nay unit vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_{\mathbf{u}}f(x,y) = f_x(x,y)a + f_y(x,y)b$$

Definition 10.6.3: Gradient

If *f* is a function of two variables *x* and *y*, then the **gradient** of *f* is the vector function ∇f defined by

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$$

With this notation for the gradient vector, the expression for the directional derivative can rewritten as

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}$$

Definition 10.6.4: Directional and Gradients of Functions of Three Variables

The **directional derivatives** of *f* at (x_0, y_0, z_0) in the direction of a unit vector $\mathbf{u} = \langle a, b, c \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0, z_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb, z_0 + hc) - f(x_0, y_0, z_0)}{h}$$

if this limit exists.

$$D_{\mathbf{u}}f(x_0) = \lim_{h \to 0} \frac{f(x_0 + h\mathbf{u}) - f(x_0)}{h}$$

For a function f with three variables, the **gradient vector**, denoted by ∇f or **grad** f is

$$\nabla f = \langle f_x, f_y, f_z \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

Then, directional derivatives could be rewritten as

$$D_{\mathbf{u}}f(x,y,z) = \nabla f(x,y,z) \cdot \mathbf{u}$$

Theorem 10.6.5: Maximizing the Directional Derivative

Suppose f is a differentiable function of two or three variables. The maximum value of the directional derivative $D_{\mathbf{u}}f(x)$ is $|\nabla f(x)|$ and it occurs when \mathbf{u} has the same direction as the gradient vector $\nabla f(x)$.

Definition 10.6.6: Tangent Planes to Level Surfaces

The gradient vector at P, $\nabla F(x_0, y_0, z_0)$, is perpendicular to the tangent vector $\mathbf{r}'(t_0)$ to any curve C on S that passes through P.

If $\nabla F(x_0, y_0, z_0) \neq 0$, it is therefore natural to define the **tangent plane to the level surface** F(x, y, z) = kat $P(x_0, y_0, z_0)$ as the plane that passes through *P* and has normal vector $\nabla F(x_0, y_0, z_0)$. We can write the equation of this tangent plane as

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

The **normal line** to S at P is the line passing through P and perpendicular to the tangent plane. Its symmetric equations are

 $\frac{x - x_0}{F_x(x_0, y_0, z_0)} = \frac{y - y_0}{F_y(x_0, y_0, z_0)} = \frac{z - z_0}{F_z(x_0, y_0, z_0)}$

10.7 Maximum and Minimum Values

Definition 10.7.1: Local Maximum/Minimum

A function of two variables has a **local maximum** at (a, b) if $f(x, y) \leq f(a, b)$ when (x, y) is near (a, b). [This means that $f(x, y) \leq f(a, b)$ for all points (x, y) ins some disk with center (a, b)]. The number f(a, b) is called **local maximum value**. If $f(x, y) \leq f(a, b)$ when (x, y) is near (a, b), then f(a, b) is **local minimum value**.

If the inequalities above hold for *all* points (x, y) in the domain of f, then f has an **absolute maximum** (or **absolute minimum**) at (a, b).

Theorem 10.7.2: Critical Points

If *f* has a local maximum or minimum at point (a, b) and the first-order derivatives of *f* exit there, then $f_x(a, b) = 0$ and $f_y(a, b) = 0$.

A point is called **critical point** (or **stationary point**) of *f* if $f_x(a,b) = 0$ and $f_y(a,b) = 0$, or if one of these partial derivatives does not exist.

Theorem 10.7.3: Second Derivative Test

Suppose the second partial derivatives of f are continuous on a disk with center (a, b), and suppose that $f_x(a, b) = 0$ and $f_y(a, b) = 0$ [that is, (a, b) is a critical point of f]. Let

$$D = D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^2$$

- (1) If D > 0 and $f_{xx}(a, b) > 0$, then f(a, b) is a local minimum.
- (2) If D > 0 and $f_{xx}(a, b) < 0$, then f(a, b) is a local maximum.
- (3) If D < 0, then f(a, b) is a saddle point.
- (4) If D = 0, then the test is inconclusive.

Theorem 10.7.4: Extreme Value Theorem for Functions of Two Variables (EVT)

If f is **continuus** on c **closed**, **bounded** set D in \mathbb{R}^2 , then f attains an absolute maximum value $f(x_1, y_1)$ and an absolute minimum value $f(x_2, y_2)$ at some points (x_1, y_1) and (x_2, y_2) in D.

Theorem 10.7.5: Absolute Maximum and Minimum Values

To find the absolute maximum and minimum values of a continuous function f on a closed, bounded set D:

- (1) Find the values of f at the critical points of f in D.
- (2) Find the extreme values of f on the boundary of D.
- (3) The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

10.8 Lagrange Multipliers

Definition 10.8.1: Lagrange Multiplier

In order to maximize or minimize a general function f(x, y, z) subject to a constraint (or side condition) of the form g(x, y, z) = k, we have **Lagrange Multiplier**. Suppose f has such an extreme value at a point $P(x_0, y_0, z_0)$. The gradient vectors $\nabla(x_0, y_0, z_0)$ and $\nabla(x_0, y_0, z_0)$ must be parallel. Therefore if $\nabla(x_0, y_0, z_0) \neq 0$, there is a number λ such that

$$\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0)$$

The number λ is called a **Lagrange Multiplier**.

Theorem 10.8.2: Method of Lagrange Multiplier

To find the maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k [assuming that these extreme values exist and $\nabla g \neq 0$ on the surface g(x, y, z) = k]:

(1) Find all values of x, y, z and λ such that

$$\nabla f(x,y,z) = \lambda \nabla g(x,y,z)$$

and

$$g(x, y, z) = k$$

(2) Evaluate f at all the points (x,y,z) that results from step (1). The largest of these values is the maximum value of f; the smallest is the minimum value of f.

Definition 10.8.3: Lagrange Multiplier for Two Constraints

We want to find the maximum and minimum values of a function f(x, y, z) subject to two constraints (side conditions) of the form g(x, y, z) = k and h(x, y, z) = c. Suppose f has such an extreme value at a point $P(x_0, y_0, z_0)$. So there are numbers λ and μ (called **Lagrange Multiplier**) such that

 $\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0) + \mu h(x_0, y_0, z_0)$

Chapter 11

Multiple Integrals

11.1 Double Integrals Over Rectangles

Definition 11.1.1: Riemann Sum

If f(x) is defined for $a \le x \le b$, we start by dividing the interval [a, b] into n subintervals $[x_i - x_{i-1}]$ and we choose sample points x_i^* in the subintervals. Then we form the Riemann sum

$$\sum_{i=1}^{n} f(x_i^*) \Delta x_i$$

Definition 11.1.2: Double Integral of f over the rectangle R

The **double integral** of f over the rectangle R is

$$\iint_R f(x,y) \, \mathrm{d}A = \lim_{\max \Delta x_i, \Delta y_i \to 0} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}^*, y_{ij}^*) \Delta A_{ij}$$

if this limit exists.

Property 11.1.3

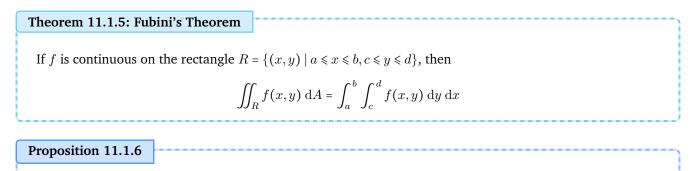
If $f(x,y) \ge 0$, then the volume V of the solid that lies above the rectangle R and below the surface z = f(x,y) is

$$V = \iint_R f(x, y) \, \mathrm{d}A$$

Definition 11.1.4: Midpoint rule for double integrals

$$\iint_{R} f(x,y) \, \mathrm{d}A \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

where $\overline{x_i}$ is the midpoint of $[x_{i-1}, x_i]$ and $\overline{y_i}$ is the midpoint of $[y_{j-1}, y_j]$.



$$\iint_{R} g(x)h(y) \, \mathrm{d}A = \int_{a}^{b} g(x) \, \mathrm{d}x \int_{c}^{d} h(y) \, \mathrm{d}y \qquad \text{where}R = [a, b] \times [c, d]$$

11.2 Double Integrals Over General Regions

Definition 11.2.1: Double Integral of *f* over *D*

We define a new function F with domain R by angular region R.

$$F(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \text{ is in } D\\ 0 & \text{if } (x,y) \text{ is in } R \text{ but not in } D \end{cases}$$

If the double integral of F exists over R, then we define the **double integral of** f over D by

 $\iint_D f(x,y) \, \mathrm{d}A \qquad \text{where } F \text{ is given above}$

Definition 11.2.2: Type I

A plane region D is said to be of **type I** if it lies between the graphs of two continuous functions of x, that is,

$$D = \{(x, y) \mid a \leq x \leq b, g_1(x) \leq y \leq g_2(x)\}$$

If f is continuous on a type I region D such that

$$D = \{(x, y) \mid a \leq x \leq b, g_1(x) \leq y \leq g_2(x)\}$$

then

$$\iint_D f(x,y) \, \mathrm{d}A = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) \, \mathrm{d}y \, \mathrm{d}x$$

Definition 11.2.3: Type II

A plane region D is said to be of **type II** if it lies between the graphs of two continuous functions of x, that is,

$$D = \{(x, y) \mid a \leq x \leq b, h_1(y) \leq y \leq h_2(y)\}$$

If f is continuous on a type I region D such that

$$D = \{(x, y) \mid c \leq y \leq d, h_1(y) \leq x \leq h_2(y)\}$$

then

$$\iint_D f(x,y) \, \mathrm{d}A = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

Property 11.2.4

$$\iint_D f(x,y) \, \mathrm{d}A = \iint_{D_1} f(x,y) \, \mathrm{d}A + \iint_{D_2} f(x,y) \, \mathrm{d}A$$

where $D = D_1 \cup D_2$, where D_1 and D_2 don't overlap except perhaps on their boundaries.

$$\iint_D 1 \, \mathrm{d}A = A(D)$$

Theorem 11.2.5

If $m \leq f(x, y) \leq M$ for all (x, y) in D, then

$$mA(D) \leq \iint_D f(x,y) \, \mathrm{d}A \leq MA(D)$$

11.3 Double Integrals In Polar Coordinates

Definition 11.3.1: Polar Rectangle

The polar coordinates (r, θ) of a point are related to rectangular coordinates (x, y) by the equations

$$r^2 = x^2 + y^2$$
 $x = r\cos\theta$ $y = r\sin\theta$

A polar rectangle is

$$R = \{ (r, \theta) \mid a \leq r \leq b, \alpha \leq \theta \leq \beta \}$$

Theorem 11.3.2: Change to Polar Coordinates in a Double Integral

If *f* is continuous on a polar rectangle *R* given by $0 \le a \le r \le b, \alpha \le \theta \le \beta$, where $0 \le \beta - \alpha \le 2\pi$, then

$$\iint_R f(x,y) \, \mathrm{d}A = \int_\alpha^\beta \int_a^b f(r\cos\theta, r\sin\theta) r \, \mathrm{d}r \, \mathrm{d}\theta$$

Be careful not to forget the additional factor r on the right side of Formula 2.

Theorem 11.3.3

If f is continuous on a polar region of the form

$$D = \{(r,\theta) \mid \alpha \leq \beta, h_1(\theta) \leq rh_2(\theta)\}$$

then

$$\iint_D f(x,y) \, \mathrm{d}A = \int_\alpha^\beta \int_{h_1(\theta)}^{h_2(\theta)} f(r\cos\theta, r\sin\theta) r \, \mathrm{d}r \, \mathrm{d}\theta$$

11.4 Applications of Double Integrals

Property 11.4.1: Density and Mass

We obtain the total mass m of the lamina as the limiting value of approximations:

$$m = \lim_{\max_{\Delta x_i, \Delta y_j} \to 0} \sum_{i=1}^k \sum_{j=1}^l \rho(x_{ij}^*, y_{ij}^*) \Delta A_{ij} = \iint_D \rho(x, y) \, \mathrm{d}A$$

Definition 11.4.2: Moment

The **moment** of the entire lamina **about the** *x***-axis**:

$$M_{x} = \lim_{\max_{\Delta x_{i}, \Delta y_{j}} \to 0} \sum_{i=1}^{m} \sum_{j=1}^{n} y_{ij}^{*} \rho(x_{ij}^{*}, y_{ij}^{*}) \Delta A_{ij} = \iint_{D} y \rho(x, y) \, \mathrm{d}A$$

The moment about the *y*-axis:

$$M_{y} = \lim_{\max \Delta x_{i}, \Delta y_{j} \to 0} \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}^{*} \rho(x_{ij}^{*}, y_{ij}^{*}) \Delta A_{ij} = \iint_{D} x \rho(x, y) \, \mathrm{d}A$$

Definition 11.4.3: Center of Mass

The coordinates $(\overline{x}, \overline{y})$ of the center of mass of a lamina occupying the region D and having density function $\rho(x, y)$ are

$$\overline{x} = \frac{M_y}{m} = \frac{1}{m} \iint_D x \rho(x, y) \, \mathrm{d}A \qquad \overline{y} = \frac{M_x}{m} = \frac{1}{m} \iint_D y \rho(x, y) \, \mathrm{d}A$$

where the mass m is given by

$$m = \iint_D \rho(x, y) \, \mathrm{d}A$$

Definition 11.4.4: Moment of Inertia

The **moment of inertia** (also called the **second moment**) of a particle of mass m about axis is defined to be mr^2 , where r is the distance from the particle to the axis.

We divide D into small rectangles, approximate the moment of inertia of each sub rectangle about the x-axis, and take the limit of the sum as the sub rectangles become smaller. The result is the **moment of the inertia**

of the lamina **about the** *x***-axis**:

$$I_{x} = \lim_{\max_{\Delta x_{i}, \Delta y_{j}} \to 0} \sum_{i=1}^{m} \sum_{j=1}^{n} (y_{ij}^{*})^{2} \rho(x_{ij}^{*}, y_{ij}^{*}) = \iint_{D} y^{2} \rho(x, y) \, \mathrm{d}A$$

The moment of the inertia about the y-axis:

$$I_{y} = \lim_{\max_{\Delta x_{i}, \Delta y_{j}} \to 0} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij}^{*})^{2} \rho(x_{ij}^{*}, y_{ij}^{*}) = \iint_{D} x^{2} \rho(x, y) \, \mathrm{d}A$$

It is also of interest to consider the **moment of inertia about the origin**, also called the **polar moment of inertia**:

$$I_{0} = \lim_{\max \Delta x_{i}, \Delta y_{j} \to 0} \sum_{i=1}^{m} [\sum_{j=1}^{n} (x_{ij}^{*})^{2} + (y_{ij}^{*})] \rho(x_{ij}^{*}, y_{ij}^{*}) \Delta A_{ij}$$
$$= \iint_{D} (x^{2} + y^{2}) \rho(x, y) \, \mathrm{d}A$$

11.5 Triple Integrals

Definition 11.5.1: Triple Integral

The **triple integral** of f over the box B is

$$\iiint_B f(x, y, z) \, \mathrm{d}V = \lim_{l, m, n \to \infty} \sum_{i=1}^l \sum_{j=1}^i \sum_{k=1}^n f(x_i, y_k, z_k) \Delta V$$

Theorem 11.5.2: Fubini's Theorem for Triple Integrals

If *f* is continuous on the rectangular box $B = [a, b] \times [c, d] \times [r, s]$, then

$$\iiint_B f(x, y, z) \, \mathrm{d}V = \int_r^s \int_c^d \int_a^b f(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$

Definition 11.5.3: Triple Integral Over a General Bounded Region E

We define the **triple integral over a general bounded region** E in three dimensional space. We enclose E in a box B. Then we define a function F so that it agrees with f on E but is 0 for points in B that are outside E. By definition,

$$\iiint_E f(x,y,z) \, \mathrm{d}V = \iiint_B F(x,y,z) \, \mathrm{d}V$$

Definition 11.5.4: Type 1

A solid region E is said to be **type 1** if it lies between the graphs of two continuous functions of x and y, that is,

 $E = \{ (x, y, z) \mid (x, y) \in D, u_1(x, y) \le z \le u_2(x, y) \}$

It can be shown that if E is a type 1 region, then

$$\iiint_E f(x,y,z) \, \mathrm{d}V = \iint_D \left[\int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) \, \mathrm{d}z \right] \, \mathrm{d}A$$

In particular, if the projection D of E onto the xy-plane is a type I plane region, then

 $E = \{(x, y, z) \mid a \leq x \leq b, g_1(x) \leq y \leq g_2(x), u_1(x, y) \leq z \leq u_2(x, y)\}$

and the equation becomes

$$\iiint_E f(x,y,z) \, \mathrm{d}V = \int_a^b \int_{g_1(x)}^{g_2(x)} \int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) \, \mathrm{d}z \, \mathrm{d}y \, \mathrm{d}x$$

If, on the other hand, D is a type II plane region, then

$$E = \{(x, y, z) \mid c \leq y \leq d, h_1(y) \leq x \leq h_2(y), u_1(x, y) \leq z \leq u_2(x, y)\}$$

and the equation becomes

$$\iiint_E f(x,y,z) \, \mathrm{d}V = \int_c^d \int_{h_1(y)}^{h_2(y)} \int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) \, \mathrm{d}z \, \mathrm{d}x \, \mathrm{d}y$$

Definition 11.5.5: Type 2

A solid region of type 2 if it is of the form

$$E = \{ (x, y, z) \mid (y, z) \in D, u_1(y, z) \le x \le u_2(y, z) \}$$

where, this time, D is the projection of E onto the yz-plane. The back surface is $x = u_1(y, z)$, the front surface is $x = u_2(y, z)$, and we have

$$\iiint_E f(x, y, z) \, \mathrm{d}V = \iint_D \left[\int_{u_1(y, z)}^{u_2(y, z)} f(x, y, z) \, \mathrm{d}x \right] \, \mathrm{d}A$$

Definition 11.5.6: Type 3

A solid region of type 3 if it is of the form

 $E = \{(x, y, z) \mid (x, z) \in D, u_1(x, z) \le y \le u_2(x, z)\}$

where, this time, D is the projection of E onto the yz-plane. The back surface is $x = u_1(y, z)$, the front surface is $x = u_2(y, z)$, and we have

$$\iiint_E f(x,y,z) \, \mathrm{d}V = \iint_D \left[\int_{u_1(x,z)}^{u_2(x,z)} f(x,y,z) \, \mathrm{d}y \right] \, \mathrm{d}A$$

Property 11.5.7: Application of Triple Integrals

The special case where f(x, y, z) = 1 for all points in E. Then all the triple integral does represent the volume of *E*:

$$V(E) = \iiint_E \mathrm{d}V$$

11.6 Triple Integral Coordinates

Definition 11.6.1: Cylinder Coordinates

To convert from cylindrical to rectangular coordinates, we use the equation

$$x = r \cos \theta$$
 $y = r \sin \theta$ $z = z$

wheres to convert from rectangular to cylindrical coordinates, we use

$$r^2 = x^2 + y^2$$
 $\tan \theta = \frac{y}{x}$ $z = z$

Theorem 11.6.2: Formula for Triple Integration in Cylindrical Coordinates

This formula says that we convert a triple integral rectangular to cylindrical coordinates by writing $x = r \cos \theta$, $y = r \sin \theta$, leaving z as it is, using the appropriate limits of integration for z, r and θ , and replacing dV by $rdzdrd\theta$.

$$\iiint_E f(x,y,z) \, \mathrm{d}V = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} \int_{u_1(r\cos\theta,r\sin\theta)}^{u_2(r\cos\theta,r\sin\theta)} f(r\cos\theta,r\sin\theta,z)r \, \mathrm{d}z \, \mathrm{d}r \, \mathrm{d}\theta$$

11.7 Triple Integrals in Spherical Coordinates

Definition 11.7.1: Spherical Coordinates

The **spherical coordinates** (ρ , θ , ϕ of a point *P* in space, where $\rho = |OP|$ is the distance from the origin to *P*, θ is the same angle as in cylindrical coordinates, and ϕ is the angle between the positive *z*-axis and the line segment *OP*. Note that

 $\rho \leqslant 0 \qquad 0 \leqslant \phi \leqslant \pi$

We use the equation below to convert from rectangular to spherical coordinates

 $y = \rho \sin \phi \sin \theta$ $x = \rho \sin \phi \cos \theta$ $z = \rho \cos \phi$

Also, the formula shows that

 $\rho^2 = x^2 + y^2 + z^2$

Definition 11.7.2: Spherical Wedge

In the spherical coordinate system the counterpart of a rectangular box is a spherical wedge

$$E = \{ (\rho, \theta, \phi) \mid a \leq \rho \leq b, \alpha \leq \theta \leq \beta, c \leq \phi \leq d \}$$

Theorem 11.7.3

$$\iiint_E f(x, y, z) \, \mathrm{d}V = \int_c^d \int_\alpha^\beta \int_a^b f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \, \mathrm{d}\rho \, \mathrm{d}\theta \, \mathrm{d}\phi$$

11.8 Change of Variables in Multiple Integrals

Definition 11.8.1: Transformation

We consider a change of variables that is given by a **transformation** T from the uv-plane to the xy-plane:

$$T(u,v) = (x,y)$$

where x and y are related to u and v by the equations

$$x = g(u, v)$$
 $y = h(u, v)$

or, as we sometimes write

x = x(u, v) y = y(u, v)

We usually assume that T is a C^1 transformation, which means that g and h have continuous first-order partial derivatives.

If T is a one-to-one transformation, then it has an **inverse transformation** T^{-1} from the xy-plane to the uv-plane and it may be possible to solve the equation for u and v in terms of x and y:

u = G(x, y) v = H(x, y)

Definition 11.8.2: Jacobian

The **Jacobian** of the transformation *T* given by x = g(u, v) and y = h(u, v) is

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

Theorem 11.8.3: Change of Variables in a Double Integral

Suppose that T is a C^1 transformation whose Jacobian is nonzero and that maps a region S in the uv-plane onto a region R in the xy-plane. Suppose that f is continuous on R and that R and S are type I or type II regions. Suppose also that T is one-to-one, except perhaps on the boundary of S. Then

$$\iint_{R} f(x,y) \, \mathrm{d}A = \iint_{S} f\big(x(u,v), y(u,v)\big) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, \mathrm{d}u \, \mathrm{d}v$$

Definition 11.8.4: Jacobian of Triple Integral

The **Jacobian** of *T* is a 3×3 determinant. We have the following formula for triple integrals:

$$\begin{split} & \iiint_{R} f(x,y,z) \, \mathrm{d}V \\ & = \iiint_{S} f(f(u,v,w), y(u,v,w), z(u,v,w)) \left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right| \, \mathrm{d}u \mathrm{d}v \mathrm{d}w \end{split}$$

Chapter 12

Vector Calculus

12.1 Vector Fields

Definition 12.1.1: Vector Field on \mathbb{R}^2 Let *D* be a set in \mathbb{R}^2 (a plane region). A **vector field on** \mathbb{R}^2 is a function **F** that assigns to each point (x, y) in *D* a two-dimensional vector $\mathbf{F}(x, y)$.

Definition 12.1.2: Vector Field on \mathbb{R}^3

Let *E* be a subset of \mathbb{R}^3 . A vector field on \mathbb{R}^3 is a function **F** that assigns to each point (x, y, z) in *E* a three-dimensional vector $\mathbf{F}(x, y, z)$.

12.2 Line Integrals

Definition 12.2.1: Line Integral of f along C

If f is defined on a smooth curve C given by

$$x = x(t)$$
 $y = y(t)$ $a \le t \le b$

then the line integral of f along C is

$$\int_C f(x,y) \, \mathrm{d}s = \lim_{\max \Delta s_i \to 0} \sum_{i=1}^n f(x_i^*, y_i^*) \Delta s_i$$

if this limit exists.

Property 12.2.2: Use Length of C to evaluate

 $\int_C f(x,y) \, \mathrm{d}s = \int_a^b f(x(t),y(t)) \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} \, \mathrm{d}t$

Definition 12.2.3: Line Integral with respect to x and y

$$\int_C f(x,y) \, \mathrm{d}x = \int_a^b f(x(t), y(t)) x'(t) \, \mathrm{d}t$$
$$\int_C f(x,y) \, \mathrm{d}y = \int_a^b f(x(t), y(t)) y'(t) \, \mathrm{d}t$$

Definition 12.2.4: Line Integral of Vector Fields

Let **F** be a continuous vector field defined on a smooth curve *C* given by a vector function $\mathbf{r}(t)$, $a \le t \le b$. Then the **line integral of** *F* **along** *C* is

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, ds = \int_C \mathbf{F} \cdot \mathbf{T} \, ds$$

Property 12.2.5

 $\int_{C} \mathbf{F} \cdot dr = \int_{C} P \, dx + Q \, dy + R \, dz \qquad \text{where } \mathbf{F} = P \mathbf{i} + Q \mathbf{k} + R \mathbf{k}$

12.3 The Fundamental Theorem for Line Integrals

Theorem 12.3.1: The Fundamental Theorem of Calculus

$$\int_a^b F'(x) \, \mathrm{d}x = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

Theorem 12.3.2: The Fundamental Theorem for Line Integrals

Let *C* be a smooth curve given by the vector function $\mathbf{r}(t)$, $a \le t \le b$. Let *f* be a differentiable function of two or three variables whose gradient vector ∇f is continuous on *C*. Then

$$\int_C \nabla f \cdot dr = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

Theorem 12.3.3: Independent of Path

 $\int_C F \cdot dr$ is independent of path in D if and only if $\int_C F \cdot dr = 0$ for every closed path C in D.

Theorem 12.3.4

Suppose **F** is a vector field that is continuous on an open connected region *D*. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in *D*, then **F** is a conservative vector filed on *D*; that is, there exists a function *f* such that $\nabla f = \mathbf{F}$.

If $\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$ is a conservative vector field, where *P* and *Q* have continuous first-order partial derivatives on a domain *D*, then throughout *D* we have

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Theorem 12.3.6: Test Conservative

Let $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ be a vector field on an open simply-connected region D. Suppose that P and Q have continuous first-order derivatives and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \qquad \text{throughout } D$$

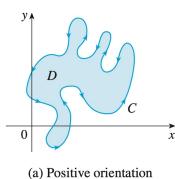
Then **F** is conservative.

12.4 Green's Theorem

Theorem 12.4.1: Green's Theorem

Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C. If P and Q have continuous partial derivatives on an open region that contains D, then

$$\int_{C} P dx + Q dy = \iint_{D} \left(\frac{\partial P}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$



(b) Negative orientation

Property 12.4.2

The Green's Theorem gives the following formulas for the area of *D*:

$$A = \oint_C x \, \mathrm{d}y = -\oint_C y \, \mathrm{d}x = \frac{1}{2} \oint_C x \, \mathrm{d}y - y \, \mathrm{d}x$$

12.5 Curl and Divergence

Definition 12.5.1: Curl

If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 and the partial derivative of P, Q, and R all exist, then the **curl** of \mathbf{F} is the vector field on \mathbb{R}^3 defined by

$$\operatorname{curl} \mathbf{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathbf{k}$$

Remember the definition by means of the symbolic expression:

curl $\mathbf{F} = \nabla \times \mathbf{F}$

Theorem 12.5.2

If f is a function of three variables that has continuous second-order partial derivatives, then

```
\operatorname{curl}(\nabla \mathbf{f}) = \mathbf{0}
```

Theorem 12.5.3

If **F** is a vector field defined on all of \mathbb{R}^3 whose components functions have continuous partial derivatives and curl **F** = **0**, then **F** is a conservative vector field.

Definition 12.5.4: Divergence of F

If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector on \mathbb{R}^3 and $\frac{\partial P}{\partial x}, \frac{\partial Q}{\partial y}, and \frac{\partial R}{\partial z}$ exist, then the **divergence of F** is the function of three variables defined by

div
$$\mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

In terms of the gradient operator, the divergence of **F** can be written symbolically:

div $\mathbf{F} = \nabla \cdot \mathbf{F}$

Theorem 12.5.5

If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 and P, Q, and R have continuous second-order partial derivatives, then

div curl ${\bf F}$ = 0

Theorem 12.5.6: Vector Forms of Green's Theorem

 $\oint_C \mathbf{F} \, \mathrm{d}\mathbf{r} = \iint_D \left(\operatorname{curl} \mathbf{F} \right) \, \cdot \mathbf{k} \, \mathrm{d}A$

A second vector form of Green's Theorem:

$$\oint_C \mathbf{F} \cdot \mathbf{n} \, \mathrm{d}t = \iint_D \mathrm{div} \, \mathbf{F}(x, y) \, \mathrm{d}A$$

12.6 Parametric Surface and Their Areas

Definition 12.6.1: Parametric Surface

We suppose that

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}$$

is a vector-valued function defined on a region D in the uv-plane. So x, y, and z, the component functions of r, are functions of the two variables u and v with domain D. The set of all points (x, y, z) in \mathbb{R}^3 such that

$$x = x(u, v) \qquad y = y(u, v) \qquad z = z(u, v)$$

and (u, v) varies throughout D, is called **parametric surface** S and the second equation is called **parametric** equations of S.

Definition 12.6.2: Parametric Surface

If a smooth parametric surface S is given by the equation

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k} \qquad (u,v) \in D$$

and S is covered just once as (u, v) ranges throughout the parameter domain D, then the **surface area** of S is

$$A(S) = \iint_D |\mathbf{r}_u \times \mathbf{r}_v| \, \mathrm{d}A$$

where

$$\mathbf{r}_{u} = \frac{\partial x}{\partial u}\mathbf{i} + \frac{\partial y}{\partial u}\mathbf{j} + \frac{\partial z}{\partial u}\mathbf{k} \qquad \mathbf{r}_{v} = \frac{\partial x}{\partial v}\mathbf{i} + \frac{\partial y}{\partial v}\mathbf{j} + \frac{\partial z}{\partial v}\mathbf{k}$$

Definition 12.6.3: Surface Area Formula

$$A(S) = \iint_D \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \, \mathrm{d}A$$

12.7 Surface Integrals



If the components are continuous, and $\mathbf{r}_u, \mathbf{r}_v$ are nonzero and nonparallel in the interior of D, it can be shown from Definition 1, even when D is not a rectangle, that

$$\iint_{S} f(x, y, z) \, \mathrm{d}S = \iint_{S} f(\mathbf{r}(u, v)) |\mathbf{r}_{u} \times \mathbf{r}_{v}| \, \mathrm{d}A$$

Observe also that

$$\iint_{S} 1 \, \mathrm{d}S = \iint_{S} |\mathbf{r}_{u} \times \mathbf{r}_{v}| \, \mathrm{d}A$$

Final Review

Definition 12.7.2: Surface Integrals in Graph point of view

An surface *S* with the equation z = g(x, y) can be regarded as a parametric surface with parametric equation

x = x y = y z = g(x, y)

and so we have

$$\mathbf{r}_x = \mathbf{i} + \left(\frac{\partial g}{\partial x}\right) \mathbf{k}$$
 $\mathbf{r}_y = \mathbf{j} + \left(\frac{\partial g}{\partial y}\right) \mathbf{k}$

Thus

 $\mathbf{r}_x \times \mathbf{r}_y = -\frac{\partial g}{\partial x} - \frac{\partial g}{\partial y}\mathbf{j} + \mathbf{k}$

and

$$|\mathbf{r}_x \times \mathbf{r}_y| = \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + 1}$$

Therefore, in this case, Formula 2 becomes

$$\iint_{S} f(x, y, z) \, \mathrm{d}S = \iint_{D} f(x, y, g(x, y)) \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} + 1 \, \mathrm{d}A}$$

Definition 12.7.3: Surface Integral in Oriented Surfaces

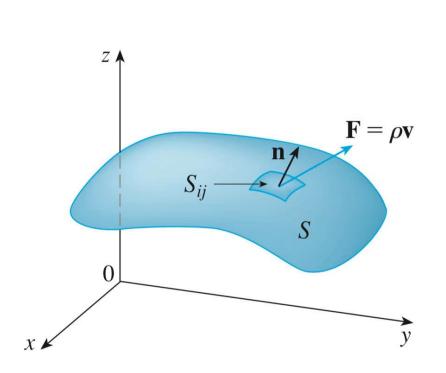
For a surface z = g(x, y) given as the graph of g, we use Equation 3 to associate with the surface a natural orientation given by the unit normal vector

$$\mathbf{n} = \frac{\mathbf{r}_x \times \mathbf{r}_y}{|\mathbf{r}_x \times \mathbf{r}_y|} = \frac{-\frac{\partial g}{\partial x}\mathbf{i} - \frac{\partial g}{\partial y}\mathbf{j} + \mathbf{k}}{\sqrt{1 + \left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2}}$$

Definition 12.7.4: Surface Integral of Vector Fields

If \mathbf{F} is a continuous vector field defined on an oriented surface S with unit vector \mathbf{n} , then the **surface integral** of F over S is

$$\iint_{S} \mathbf{F} \cdot \, \mathrm{d}\mathbb{S} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, \mathrm{d}S$$



This integral is also called the **flux** of \mathbf{F} across S.

If S is given by a vector function $\mathbf{r}(u, v)$, then n is given by Equation 6, we have

$$\iint_{S} \mathbf{F} \cdot dS = \iint_{D} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) dA$$

In the case of a surface S given by a graph z = g(x, y), we can think of x and y as parameters and use Equation 3 to write

$$\mathbf{F} \cdot (\mathbf{r}_x \times \mathbf{r}_y) = (P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}) \cdot \left(-\frac{\partial g}{\partial x}\mathbf{i} - \frac{\partial g}{\partial y}\mathbf{j} + \mathbf{k} \right)$$

Thus Surface integrals of vector fields in graph point of view is

$$\iint_{S} \mathbf{D} \cdot d\mathbf{S} = \iint_{S} \left(-P \frac{\partial g}{\partial x} - Q \frac{\partial g}{\partial y} + R \right) dA$$

12.8 Stoke's Theorem

Theorem 12.8.1: Stoke's Theorem

Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation. Let \mathbb{F} be a vector field whose components have continuous partial derivatives on an open region in \mathbb{R}^3 that contains S. Then

$$\int_C \mathbf{F} \cdot \, \mathrm{d}\mathbf{r} = \iint_S \operatorname{curl} \mathbf{F} \cdot \, \mathrm{d}\mathbf{S}$$

12.9 The Divergence Theorem

Theorem 12.9.1: The Divergence Theorem

Let E be a simple solid region and let S be the boundary surface of E, given with positive (outward) orientation. Let \mathbf{F} be a vector field whose component functions have continuous partial derivatives on an open region that contains E. Then

$$\iint_{S} \mathbf{F} \cdot \, \mathrm{d}\mathbf{S} = \iiint_{E} \mathrm{div}\mathbf{F} \, \mathrm{d}V$$