MATH226

Jacob Ma

May 2022

Contents

9.1 Three-Dimensional Coordinate Systems

Theorem 9.1.1: Distance Formula in Three Dimensions

The distance $|P_1P_2|$ between the points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is

 $|P_1P_2|$ = √ $(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2$

Theorem 9.1.2: Equation of a Square

An equation of a sphere with center $C(h, k, l)$ and radius r is

$$
(x-h)^2 + (y-h)^2 + (z-l)^2 = r^2
$$

In particular, if the center is the origin O , then an equation of the sphere is

 $x^2 + y^2 + z^2 = r^2$

9.2 Vectors

Definition 9.2.1: Vector Addition

If **u** and **v** are vectors positioned so the initial point of **v** is at the terminal point of **u**, then the **sum of u + v** is the vector from the initial point of **u** to the terminal point of **v**.

Definition 9.2.2: Scalar Multiplication

If c is a scalar and **v**is a vector, then the **scalar multiple** c**v** is the vector whose length is ∣c∣ times the length of **v** and whose direction is the same as **v** if $c > 0$ and is opposite to v if $c < 0$. If $c = 0$ or $v = 0$, then $c**v** = **0**$.

Corollary 9.2.3

The length of the two-dimensional vector $\mathbf{a} = \langle a_1, a_2 \rangle$ is

$$
|\mathbf{a}| = \sqrt{a_1^2 + a_2^2}
$$

The length of the three-dimensional vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is

$$
|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}
$$

9.3 The Dot Product

9.4 The Cross Product

Property 9.4.6: Area and Volumes

Area of parallelogram:

 $A_{\text{parallelogram}} = ||\mathbf{a} \times \mathbf{b}||$

Volume of parallelepiped determined by the vectors a, b, and c, is the magnitude of their scalar triple product:

 $V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$

If the volume of the parallelepiped determined by a, b, c is 0, then the vectors must lie in the same plane; that is , they are **coplanar**,

Property 9.4.7: Directing and Normal Vector

If a line in \mathbb{R}^2 is directed by $\mathbf{u} < \alpha, \beta >$, then $\mathbf{n} < -\beta, \alpha >$ is a vector \bot to this line.

 $\mathbf{u} \cdot \mathbf{n} = 0 \Leftrightarrow \mathbf{u} \perp \mathbf{n}$

9.5 Equations of Lines and Planes

Definition 9.5.1: Vector Equation

The **vector equation** of L. Each value of of the **parameter** t gives the position vector **r** of a point on L.

 $\mathbf{r} = \mathbf{r_0} + t\mathbf{v}$

Definition 9.5.2: Parametric Equation of L

Parametric equation of the line L through the point $P_0(x_0, y_0, z_0)$ and parallel to the vector $\mathbf{v} \leq a, b, c > 0$. Each value of the parameter t gives a point (x, y, z) on L.

 $x = x_0 + at$ $y = y_0 + bt$ $z = z_0 + ct$

The numbers a, b, c are called **direction numbers** of L.

Definition 9.5.3: Symmetric Equations of L

The following equation is called **Symmetric Equations** of L through the point $P_0(x_0, y_0, z_0)$ and parallel to the vector $\mathbf{v} =$.

$$
\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}
$$

Definition 9.5.4: Line Segment

The line segment from r_0 to r_1 is given by the vector equation

 $r = (1-t)r_0 + tr_1$

Definition 9.5.5: Vector Equation of the Plane

A plane in space is determined by a point $P_0(x_0, y_0, z_0)$ in the plane and a vector that is orthogonal to the plane. This orthogonal vector n is called a **normal vector**.

$$
\mathbf{n} \cdot (\mathbf{r} - \mathbf{r_0}) = 0
$$

which can be rewritten as

 $\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r_0}$

Definition 9.5.6: Scalar Equation of Plane

$$
a(x - x_0) + b(y - y_0) + c(z - z_0) = 0
$$

This is the **Scalar Equation of the plane through** $P_0(x_0, y_0, z_0)$ **with normal vector** $n =$

Definition 9.5.7: Linear Equation of Plane

 $ax + by + cz + d = 0$

where $d = -(ax_0 + by_0 + cz_0)$. This is called a **linear equation** in x, y, z .

For such an equation, **normal vector** is $\langle a, b, c \rangle$.

Two planes are **parallel** if their normal vectors are parallel.

Theorem 9.5.8: Distance from Point to Plane

The distance *D* from a point $P_1(x_1, y_1, z_1)$ to the plane $ax + by + cz + d = 0$ is

 $D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$

Definition 9.6.2: Quadric Surfaces

A **quadric surface** is the graph of a second-degree equation in three variables x, y , and z . It can be brought into one of the two standard forms

 $Ax^{2} + By^{2} + Cz^{2} + J = 0$ $Ax^{2} + By^{2} + Iz = 0$

 $rac{y^2}{b^2} + \frac{z^2}{c^2}$ $\frac{z}{c^2} = 1$

> $rac{x^2}{a^2} + \frac{y^2}{b^2}$ b^2

Property 9.6.3: Graph of Quadric Surfaces

 x^2 $rac{x^2}{a^2} + \frac{y^2}{b^2}$

> z^2 $\frac{z^2}{c^2} = \frac{x^2}{a^2}$

z

Cone:

Elliptic Paraboloid:

Hyperbolic Paraboloid:

Hyperboloid of One Sheet:

 $\frac{z}{c} = \frac{x^2}{a^2}$ $rac{x^2}{a^2} + \frac{y^2}{b^2}$ b^2 z $\frac{z}{c} = \frac{x^2}{a^2}$ $rac{x^2}{a^2} - \frac{y^2}{b^2}$ b^2 x^2 $rac{x^2}{a^2} + \frac{y^2}{b^2}$ $rac{y^2}{b^2} - \frac{z^2}{c^2}$ $\frac{z}{c^2} = 1$

Hyperboloid of Two Sheets:

$$
-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1
$$

9.7 Vector Functions and Space Curves

A **vector-valued function**, or **vector function**, is simply a function whose domain is a set of real numbers and whose range is a set of vectors. If $f(t)$, $g(t)$, $h(t)$ are components of the vector $r(t)$, then f, g, h are real-valued functions called **component functions** of **r** and we can write

$$
\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}
$$

Theorem 9.7.1: Limit of Vector Function

If $r(t) = \langle f(t), g(t), h(t) \rangle$, then

$$
\lim_{t \to a} \mathbf{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle
$$

provided the limits of the component functions exist.

A function **r** is **continuous at** a if

$$
\lim_{t\to a}\mathbf{r}(t)=\mathbf{r}(a)
$$

Definition 9.7.2: Space Curve

The set C of all points (x, y, z) in space, where

$$
x = f(t) \quad y = g(t) \quad z = h(t)
$$

and t varies throughout the interval I, is called a **space curve**. The equations are called **parametric equations of** C and t is called a **parameter**.

Definition 9.7.3: Derivative r'

The **derivative r'** of a vector function **f** is defined:

$$
\frac{d\mathbf{r}}{dt} = \mathbf{r'} = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}
$$

Theorem 9.7.4

If $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, where f, g, h are differentiable functions, then

 ${\bf r}'(t) = \langle f'(t), g'(t), h'(t) \rangle = f'(t) {\bf i} + g'(t) {\bf j} + h'(t) {\bf k}$

Theorem 9.7.5: Differentiation Rules

Suppose u and v are differentiable vector functions, c is a scalar, and f is a real-valued function. Then

(1)

$$
\frac{d}{dt}[\mathbf{u}(t) + \mathbf{v}(t)] = \mathbf{u}'(t) + \mathbf{v}'(t)
$$

$$
\int_{a}^{b} \mathbf{r}(t) dt = \left(\int_{a}^{b} f(t) dt \right) \mathbf{i} + \left(\int_{a}^{b} g(t) dt \right) \mathbf{j} + \left(\int_{a}^{b} h(t) dt \right) \mathbf{k}
$$

9.8 Arc Length and Curvature

Theorem 9.8.1: Arc Length

If the curve is traversed exactly once as t increases from a to b , then it can be shown that its length is

$$
L = \int_a^b \sqrt{[f'(t)]^2 + [g'(t)]^2 + [h'(t)]^2} dt
$$

=
$$
\int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt
$$

=
$$
\int_a^b |\mathbf{r}'(t)| dt
$$

Definition 9.8.2: Arc Length Function

We say that two different equations of the same curve are **parametrizations** of the curve. We define **r**'s **arc length function** s by

$$
s(t) = \int_{a}^{t} |\mathbf{r}'(u)| \, \mathrm{d}u
$$

If we differentiate both sides of this theorem of the FTC, we obtain

$$
\frac{ds}{dt} = |\mathbf{r}'(t)|
$$

It is often useful to **parametrize a curve with respect to arc length** because arc length arises naturally from the shape.

Definition 9.8.3: Tangent, Normal and Binormal Vectors
\n
$$
\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} \qquad \mathbf{B}(t) = \frac{\mathbf{r}'(t) \times \mathbf{r}''(t)}{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|} \qquad \mathbf{N}(t) = \mathbf{B}(t) \times \mathbf{T}(t)
$$
\n
$$
\mathbf{r}''(t) = \alpha(t)\mathbf{T}(t) + \beta(t)\mathbf{N}(t) \qquad \alpha(t) = \frac{(\mathbf{r}' \cdot \mathbf{r}'')(t)}{\|\mathbf{r}'(t)\|} \qquad \beta(t) = \frac{\|(\mathbf{r}' \times \mathbf{r}'')(t)\|}{\|\mathbf{r}'(t)\|} = \sqrt{\|\mathbf{r}''(t)\|} - \alpha(t)^2
$$

Definition 9.8.4: Curvature

The **curvature** of a curve is

$$
\kappa = \left| \frac{d\mathbf{T}}{ds} \right|
$$

=
$$
\frac{\| (\mathbf{r}' \times \mathbf{r}'') (t) \|}{\| \mathbf{r}' (t) \|^3}
$$

=
$$
\left| \frac{d^2 r}{ds^2} \right|
$$

If it is in a 2D plane, than it could be written as

$$
\kappa(x) = \frac{|f''(x)|}{[1 + (f'(x))^2]^{\frac{3}{2}}}
$$

Property 9.8.5: Geometric Properties of Parametric Curve Reparametrized by the Arc Length

\n(1)

\n
$$
\frac{d\mathbf{r}}{ds} = \mathbf{T}(s)
$$
\n(2)

\n
$$
\frac{d\mathbf{T}}{ds} = \kappa(s)\mathbf{N}(s) = \frac{d^2\mathbf{r}}{ds^2} \qquad \text{with} \qquad \kappa(s) = \left\| \frac{d\mathbf{T}}{ds} \right\| = \left\| \frac{d^2\mathbf{r}}{ds^2} \right\|
$$
\n(3)

\n
$$
\mathbf{r}(s_0 + \Delta_s) = \mathbf{r}(s_0) + \Delta s \mathbf{T}(s_0) + \frac{(\Delta s)^2}{2} \kappa(s_0) \mathbf{N}(s_0)
$$
\n(4) Osculating Plane is $\perp \mathbf{B}(t)$ throughout the point $\mathbf{r}(t)$. In particular, $\mathbf{r}''(t)$ is parallel to the Osculating

Plane at $\mathbf{r}(t)$. It is directed by $<\mathbf{T}(t)$, $\mathbf{N}(t)$ >.

9.9 Motion in Space Velocity and Acceleration

Chapter 10

Partial Derivatives

10.1 Functions of Several Variables

Definition 10.1.1: Domain and Range

A **function** f of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by $f(x, y)$. The set D is the **domain** of f and its **range** is the set of values that *f* takes on, that is, $\{f(x,y)|(x,y) \in D\}$.

Definition 10.1.2: Graph of f

If f is a function of two variables with domain D, then the **graph** of f is the set of all points (x, y, z) in \mathbb{R}^3 such that $z = f(x, y)$ and (x, y) in D.

Definition 10.1.3: Level Curves

The **level curves** of a function f of two variables are the curves with equations $f(x, y) = k$, where k is a constant (in the range of f).

10.2 Limits and Continuity

Definition 10.2.1: Limits

Let f be a function of two variables whose domain D includes points arbitrarily close to (a, b) . Then we say that the **limit of** $f(x, y)$ **as** (x, y) **approaches** (a, b) is L and we write

$$
\lim_{(x,y)\to(a,b)} f(x,y) = L
$$

if for every $\epsilon > 0$ there is a corresponding number $\delta > 0$ such that

if $(x, y) \in D$ and $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$ then $|f(x, y) - L| < \epsilon$

Theorem 10.2.2: Existence of Limits

If $f(x,y) \to L_1$ as $(x,y) \to (a,b)$ along path C_1 and $f(x,y) \to L_2$ as $(x,y) \to (a,b)$ along path C_2 , where $L_1 \neq L_2$, then $\lim_{(x,y)\to(a,b)} f(x,y)$ does not exist.

Definition 10.2.3: Continuity

A function f of two variables is called **continuous at** (a, b) if

$$
\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)
$$

We say f is **continuous on** D is continuous at every point (a, b) in D.

Property 10.2.4

If f is defined on a subset D of \mathbb{R}^2 , then $\lim_{x\to a} f(x) = L$ means that for every number $\epsilon > 0$ there is a corresponding number $\delta > 0$ such that

if $x \in D$ and $0 < |x - a| < \delta$ then $|f(x) - L| < \epsilon$

10.3 Partial Derivatives

Definition 10.3.1: Partial Derivative

If f is function of two variables, its **partial derivatives** are the functions f_x and f_y defined by

$$
f_x(x, y) = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}
$$

$$
f_y(x, y) = \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h}
$$

Definition 10.3.2: Notations for Partial Derivatives

$$
f_x(x,y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x,y) = \frac{\partial z}{\partial x} = f_1 = D_1 f = D_x f
$$

$$
f_y(x,y) = f_y = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} f(x,y) = \frac{\partial z}{\partial y} = f_2 = D_1 f = D_y f
$$

Theorem 10.3.3: Rule for Finding Partial Derivative of $z = f(x, y)$

(1) To find f_x , regard y as a constant and differentiate $f(x, y)$ with respect to x .

(2) To find f_y , regard x as a constant and differentiate $f(x, y)$ with respect to y.

10.4 Tangent Planes and Linear Approximations

Definition 10.4.1: Tangent Plane

Suppose f has continuous partial derivatives. An equation of the **tangent plane** to the surface $z = f(x, y)$ at the point $P(x_0, y_0, z_0)$ is

 $z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$

Definition 10.4.2: Linear Approximation

The linear function whose graph is the tangent plane, namely

 $L(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$

is called **linearization** of f at (a, b) and the approximation

 $f(x, y) \approx f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$

is called the **linear approximation** or the **tangent plane approximation** of f at (a, b) .

Definition 10.4.3: Differentiable

If $z = f(x, y)$, then f is **differentiable** at (a, b) if Δz can be expressed in the form

 $\Delta z = f_x(a, b)\Delta x + f_y(a, b)\Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$

where ϵ_1 and $\epsilon_2 \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow (0, 0)$.

Theorem 10.4.4

If the partial derivative f_x and f_y exist near (a, b) and are continuous at (a, b) , then f is differentiable at $(a, b).$

Definition 10.4.5: Total Differential

The **differential** dz, also called the **total differential**, is defined by

$$
dz = f_x(x, y)dx + f_y(x, y)dy
$$

$$
= \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy
$$

10.5 The Chain Rule

Theorem 10.5.1: The Chain Rule (General Version)

Suppose that u is a differentiable function of the n variables $x_1, x_2, ..., x_n$ and each x_j is a differentiable function of the *m* variables $t_1, t_2, ..., t_m$. Then *u* is a function of $t_1, t_2, ..., t_m$ and

$$
\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i}
$$

for each $i = 1, 2, ..., m$.

Theorem 10.5.2: Implicit Function Theorem

The **Implicit Function Theorem (Principle)**, gives conditions under which this assumption is valid. The theorem guarantees the existence of a function $f : B(r_0, a) \to B(r_1, b) \subset \mathbb{R}^k$ such that

$$
F(x, f(x)) = 0
$$

By IFP, the following assumption holds true:

$$
\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{F_x}{F_y}
$$

$$
z_x = -\frac{F_x}{F_z} \qquad z_y = -\frac{F_y}{F_z}
$$

10.6 Directional Derivatives and the Gradient Vector

Definition 10.6.1: Directional Derivative The **directional derivative** of f at (x_0, y_0) in the direction of a unit vector $u =$ is $D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0}$ $f(x_0 + ha, y_0 + hb) - f(x_0, y_0)$ h

Theorem 10.6.2: Directional Derivative

If f is a differentiable function of x and y, then f has a directional derivative in the direction of nay unit vector $\mathbf{u} = a, b >$ and

 $D_{\mathbf{u}}f(x,y) = f_x(x,y)a + f_y(x,y)b$

Definition 10.6.3: Gradient

If f is a function of two variables x and y, then the **gradient** of f is the vector function ∇f defined by

$$
\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}
$$

With this notation for the gradient vector, the expression for the directional derivative can rewritten as

$$
D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}
$$

Definition 10.6.4: Directional and Gradients of Functions of Three Variables

The **directional derivatives** of f at (x_0, y_0, z_0) in the direction of a unit vector $\mathbf{u} = \langle a, b, c \rangle$ is

$$
D_{\mathbf{u}}f(x_0, y_0, z_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb, z_0 + hc) - f(x_0, y_0, z_0)}{h}
$$

if this limit exists.

$$
D_{\mathbf{u}}f(x_0) = \lim_{h \to 0} \frac{f(x_0 + h\mathbf{u}) - f(x_0)}{h}
$$

For a function f with three variables, the **gradient vector**, denoted by ∇f or **grad** f is

$$
\nabla f = \langle f_x, f_y, f_z \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}
$$

Then, directional derivatives could be rewritten as

$$
D_{\mathbf{u}}f(x,y,z)=\nabla f(x,y,z)\cdot\mathbf{u}
$$

Theorem 10.6.5: Maximizing the Directional Derivative

Suppose f is a differentiable function of two or three variables. The maximum value of the directional derivative $D_{\mathbf{u}}f(x)$ is $|\nabla f(x)|$ and it occurs when u has the same direction as the gradient vector $\nabla f(x)$.

Definition 10.6.6: Tangent Planes to Level Surfaces

The gradient vector at $P, \, \nabla F(x_0,y_0,z_0)$, is perpendicular to the tangent vector $\mathbf{r}'(t_0)$ to any curve C on S that passes through P.

If $\nabla F(x_0, y_0, z_0) \neq 0$, it is therefore natural to define the **tangent plane to the level surface** $F(x, y, z) = k$ **at** $P(x_0, y_0, z_0)$ as the plane that passes through P and has normal vector $\nabla F(x_0, y_0, z_0)$. We can write the equation of this tangent plane as

$$
F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0
$$

The **normal line** to S at P is the line passing through P and perpendicular to the tangent plane. Its symmetric equations are

> $x - x_0$ $\frac{x - x_0}{F_x(x_0, y_0, z_0)} = \frac{y - y_0}{F_y(x_0, y_0)}$ $\frac{y-y_0}{F_y(x_0, y_0, z_0)} = \frac{z-z_0}{F_z(x_0, y_0)}$ $F_{z}(x_0, y_0, z_0)$

10.7 Maximum and Minimum Values

Definition 10.7.1: Local Maximum/Minimum

A function of two variables has a **local maximum** at (a, b) if $f(x, y) \le f(a, b)$ when (x, y) is near (a, b) . [This means that $f(x, y) \le f(a, b)$ for all points (x, y) ins some disk with center (a, b)]. The number $f(a, b)$ is called **local maximum value**. If $f(x, y) \le f(a, b)$ when (x, y) is near (a, b) , then $f(a, b)$ is **local minimum value**.

If the inequalities above hold for all points (x, y) in the domain of f, then f has an **absolute maximum** (or **absolute minimum**) at (a, b) .

Theorem 10.7.2: Critical Points

If f has a local maximum or minimum at point (a, b) and the first-order derivatives of f exit there, then $f_x(a, b) = 0$ and $f_y(a, b) = 0$.

A point is called **critical point** (or **stationary point**) of f if $f_x(a, b) = 0$ and $f_y(a, b) = 0$, or if one of these partial derivatives does not exist.

Theorem 10.7.3: Second Derivative Test

Suppose the second partial derivatives of f are continuous on a disk with center (a, b) , and suppose that $f_x(a, b) = 0$ and $f_y(a, b) = 0$ [that is, (a, b) is a critical point of f]. Let

$$
D = D(a, b) = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^2
$$

- (1) If $D > 0$ and $f_{xx}(a, b) > 0$, then $f(a, b)$ is a local minimum.
- (2) If $D > 0$ and $f_{xx}(a, b) < 0$, then $f(a, b)$ is a local maximum.
- (3) If $D < 0$, then $f(a, b)$ is a **saddle point**.
- (4) If $D = 0$, then the test is inconclusive.

Theorem 10.7.4: Extreme Value Theorem for Functions of Two Variables (EVT)

If f is **continous** on c **closed, bounded** set D in \mathbb{R}^2 , then f attains an absolute maximum value $f(x_1, y_1)$ and an absolute minimum value $f(x_2, y_2)$ at some points (x_1, y_1) and (x_2, y_2) in D.

Theorem 10.7.5: Absolute Maximum and Minimum Values

To find the absolute maximum and minimum values of a continuous function f on a closed, bounded set D :

- (1) Find the values of f at the critical points of f in D .
- (2) Find the extreme values of f on the boundary of D .
- (3) The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

10.8 Lagrange Multipliers

Definition 10.8.1: Lagrange Multiplier

In order to maximize or minimize a general function $f(x, y, z)$ subject to a constraint (or side condition) of the form $g(x, y, z) = k$, we have **Lagrange Multiplier**. Suppose f has such an extreme value at a point $P(x_0, y_0, z_0)$. The gradient vectors $\nabla(x_0, y_0, z_0)$ and $\nabla(x_0, y_0, z_0)$ must be parallel. Therefore if $\nabla(x_0, y_0, z_0) \neq 0$, there is a number λ such that

$$
\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0)
$$

The number λ is called a **Lagrange Multiplier**.

Theorem 10.8.2: Method of Lagrange Multiplier

To find the maximum and minimum values of $f(x, y, z)$ subject to the constraint $g(x, y, z) = k$ [assuming that these extreme values exist and $\nabla g \neq 0$ on the surface $g(x, y, z) = k$]:

(1) Find all values of x, y, z and λ such that

$$
\nabla f(x, y, z) = \lambda \nabla g(x, y, z)
$$

and

$$
g(x,y,z) = k
$$

(2) Evaluate f at all the points (x,y,z) that results from step (1). The largest of these values is the maximum value of f ; the smallest is the minimum value of f .

Definition 10.8.3: Lagrange Multiplier for Two Constraints

We want to find the maximum and minimum values of a function $f(x, y, z)$ subject to two constraints (side conditions) of the form $g(x, y, z) = k$ and $h(x, y, z) = c$. Suppose f has such an extreme value at a point $P(x_0, y_0, z_0)$. So there are numbers λ and μ (called **Lagrange Multiplier**) such that

 $\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0) + \mu h(x_0, y_0, z_0)$

Chapter 11

Multiple Integrals

11.1 Double Integrals Over Rectangles

Definition 11.1.1: Riemann Sum

If $f(x)$ is defined for $a \le x \le b$, we start by dividing the interval $[a, b]$ into n subintervals $[x_i - x_{i-1}]$ and we choose sample points x_i^* in the subintervals. Then we form the Riemann sum

$$
\sum_{i=1}^{n} f(x_i^*) \Delta x_i
$$

Definition 11.1.2: Double Integral of f **over the rectangle** R

The **double integral** of f over the rectangle R is

$$
\iint_{R} f(x, y) dA = \lim_{\max \Delta x_{i}, \Delta y_{i} \to 0} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A_{ij}
$$

if this limit exists.

Property 11.1.3

If $f(x, y) \ge 0$, then the volume V of the solid that lies above the rectangle R and below the surface $z = f(x, y)$ is

$$
V = \iint_R f(x, y) \, \mathrm{d}A
$$

Definition 11.1.4: Midpoint rule for double integrals

$$
\iint_R f(x, y) \, dA \approx \sum_{i=1}^m \sum_{j=1}^n f(\overline{x_i}, \overline{y_j}) \Delta A
$$

where $\overline{x_i}$ is the midpoint of $[x_{i-1}, x_i]$ and $\overline{y_i}$ is the midpoint of $[y_{j-1}, y_j]$.

11.2 Double Integrals Over General Regions

Definition 11.2.1: Double Integral of f **over** D

We define a new function F with domain R by angular region R .

$$
F(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \text{ is in } D \\ 0 & \text{if } (x,y) \text{ is in } R \text{ but not in } D \end{cases}
$$

If the double integral of F exists over R , then we define the **double integral of** f **over** D by

 $\iint_D f(x, y) \, dA$ where F is given above

Definition 11.2.2: Type I

A plane region D is said to be of **type I** if it lies between the graphs of two continuous functions of x , that is,

$$
D = \{(x, y) \mid a \leq x \leq b, g_1(x) \leq y \leq g_2(x)\}\
$$

If f is continuous on a type I region D such that

$$
D = \{(x, y) \mid a \le x \le b, g_1(x) \le y \le g_2(x)\}\
$$

then

$$
\iint_D f(x,y) dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) dy dx
$$

Definition 11.2.3: Type II

A plane region D is said to be of type II if it lies between the graphs of two continuous functions of x , that is,

$$
D = \{(x, y) \mid a \leq x \leq b, h_1(y) \leq y \leq h_2(y)\}
$$

If f is continuous on a type I region D such that

$$
D = \{(x, y) \mid c \leq y \leq d, h_1(y) \leq x \leq h_2(y)\}
$$

then

$$
\iint_D f(x,y) dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) dx dy
$$

Property 11.2.4

$$
\iint_D f(x,y) dA = \iint_{D_1} f(x,y) dA + \iint_{D_2} f(x,y) dA
$$

where $D = D_1 \cup D_2$, where D_1 and D_2 don't overlap except perhaps on their boundaries.

$$
\iint_D 1 \, \mathrm{d}A = A(D)
$$

Theorem 11.2.5

If $m \le f(x, y) \le M$ for all (x, y) in D, then

$$
mA(D) \leq \iint_D f(x,y) \, \mathrm{d} A \leq MA(D)
$$

11.3 Double Integrals In Polar Coordinates

Definition 11.3.1: Polar Rectangle

The polar coordinates (r, θ) of a point are related to rectangular coordinates (x, y) by the equations

$$
r^2 = x^2 + y^2 \qquad x = r \cos \theta \qquad y = r \sin \theta
$$

A **polar rectangle** is

$$
R = \{(r, \theta) \mid a \leq r \leq b, \alpha \leq \theta \leq \beta\}
$$

Theorem 11.3.2: Change to Polar Coordinates in a Double Integral

If f is continuous on a polar rectangle R given by $0 \le a \le r \le b, \alpha \le \theta \le \beta$, where $0 \le \beta - \alpha \le 2\pi$, then

$$
\iint_R f(x, y) dA = \int_{\alpha}^{\beta} \int_a^b f(r \cos \theta, r \sin \theta) r dr d\theta
$$

Be careful not to forget the additional factor r on the right side of Formula 2.

Theorem 11.3.3

If f is continuous on a polar region of the form

$$
D = \{ (r, \theta) \mid \alpha \leq \beta, h_1(\theta) \leq rh_2(\theta) \}
$$

then

$$
\iint_D f(x,y) dA = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} f(r \cos \theta, r \sin \theta) r dr d\theta
$$

11.4 Applications of Double Integrals

Property 11.4.1: Density and Mass

We obtain the total mass m of the lamina as the limiting value of approximations:

$$
m = \lim_{\max \Delta x_i, \Delta y_j \to 0} \sum_{i=1}^k \sum_{j=1}^l \rho(x_{ij}^*, y_{ij}^*) \Delta A_{ij} = \iint_D \rho(x, y) \, dA
$$

Definition 11.4.2: Moment

The **moment** of the entire lamina **about the** x**-axis**:

$$
M_x = \lim_{\max \Delta x_i, \Delta y_j \to 0} \sum_{i=1}^m \sum_{j=1}^n y_{ij}^* \rho(x_{ij}^*, y_{ij}^*) \Delta A_{ij} = \iint_D y \rho(x, y) \, dA
$$

The **moment about the** y**-axis**:

$$
M_y=\lim_{\max\Delta x_i, \Delta y_j\rightarrow 0}\sum_{i=1}^m\sum_{j=1}^nx_{ij}^*\rho(x_{ij}^*,y_{ij}^*)\Delta A_{ij}=\iint_Dx\rho(x,y)\;\mathrm{d}A
$$

Definition 11.4.3: Center of Mass

The coordinates (\bar{x}, \bar{y}) of the center of mass of a lamina occupying the region D and having density function $\rho(x, y)$ are

$$
\overline{x} = \frac{M_y}{m} = \frac{1}{m} \iint_D x \rho(x, y) \, dA \qquad \overline{y} = \frac{M_x}{m} = \frac{1}{m} \iint_D y \rho(x, y) \, dA
$$

where the mass m is given by

$$
m = \iint_D \rho(x, y) \, dA
$$

Definition 11.4.4: Moment of Inertia

The **moment of inertia** (also called the **second moment**) of a particle of mass m about axis is defined to be mr^2 , where r is the distance from the particle to the axis.

We divide D into small rectangles, approximate the moment of inertia of each sub rectangle about the x -axis, and take the limit of the sum as the sub rectangles become smaller. The result is the **moment of the inertia** of the lamina **about the** x**-axis**:

$$
I_x = \lim_{\max \Delta x_i, \Delta y_j \to 0} \sum_{i=1}^m \sum_{j=1}^n (y_{ij}^*)^2 \rho(x_{ij}^*, y_{ij}^*) = \iint_D y^2 \rho(x, y) \, dA
$$

The **moment of the inertia about the** y**-axis**:

$$
I_y = \lim_{\max_{\Delta x_i, \Delta y_j} \to_0} \sum_{i=1}^m \sum_{j=1}^n (x_{ij}^*)^2 \rho(x_{ij}^*, y_{ij}^*) = \iint_D x^2 \rho(x, y) \, dA
$$

It is also of interest to consider the **moment of inertia about the origin**, also called the **polar moment of inertia**:

$$
I_0 = \lim_{\max \Delta x_i, \Delta y_j \to 0} \sum_{i=1}^m \left[\sum_{j=1}^n (x_{ij}^*)^2 + (y_{ij}^*) \right] \rho(x_{ij}^*, y_{ij}^*) \Delta A_{ij}
$$

=
$$
\iint_D (x^2 + y^2) \rho(x, y) \, dA
$$

11.5 Triple Integrals

Definition 11.5.1: Triple Integral

The **triple integral** of f over the box B is

$$
\iiint_B f(x, y, z) dV = \lim_{l,m,n \to \infty} \sum_{i=1}^l \sum_{j=1}^n \sum_{k=1}^n f(x_i, y_k, z_k) \Delta V
$$

Theorem 11.5.2: Fubini's Theorem for Triple Integrals

If f is continuous on the rectangular box $B = [a, b] \times [c, d] \times [r, s]$, then

$$
\iiint_B f(x, y, z) dV = \int_r^s \int_c^d \int_a^b f(x, y, z) dx dy dz
$$

Definition 11.5.3: Triple Integral Over a General Bounded Region E

We define the **triple integral over a general bounded region** E in three dimensional space. We enclose E in a box B. Then we define a function F so that it agrees with f on E but is 0 for points in B that are outside E . By definition,

$$
\iiint_E f(x, y, z) dV = \iiint_B F(x, y, z) dV
$$

Definition 11.5.4: Type 1

A solid region E is said to be **type 1** if it lies between the graphs of two continuous functions of x and y , that is,

 $E = \{(x, y, z) | (x, y) \in D, u_1(x, y) \leq z \leq u_2(x, y)\}\$

It can be shown that if E is a type 1 region, then

$$
\iiint_E f(x, y, z) dV = \iint_D \left[\int_{u_1(x, y)}^{u_2(x, y)} f(x, y, z) dz \right] dA
$$

In particular, if the projection D of E onto the xy -plane is a type I plane region, then

$$
E = \{(x, y, z) \mid a \le x \le b, g_1(x) \le y \le g_2(x), u_1(x, y) \le z \le u_2(x, y)\}
$$

and the equation becomes

$$
\iiint_E f(x, y, z) dV = \int_a^b \int_{g_1(x)}^{g_2(x)} \int_{u_1(x, y)}^{u_2(x, y)} f(x, y, z) dz dy dx
$$

If, on the other hand, D is a type II plane region, then

$$
E = \{(x, y, z) \mid c \leq y \leq d, h_1(y) \leq x \leq h_2(y), u_1(x, y) \leq z \leq u_2(x, y)\}
$$

and the equation becomes

$$
\iiint_E f(x, y, z) dV = \int_c^d \int_{h_1(y)}^{h_2(y)} \int_{u_1(x, y)}^{u_2(x, y)} f(x, y, z) dz dx dy
$$

Definition 11.5.5: Type 2

A solid region of **type 2** if it is of the form

$$
E = \{(x, y, z) \mid (y, z) \in D, u_1(y, z) \leq x \leq u_2(y, z)\}
$$

where, this time, D is the projection of E onto the yz -plane. The back surface is $x = u_1(y, z)$, the front surface is $x = u_2(y, z)$, and we have

$$
\iiint_E f(x, y, z) dV = \iint_D \left[\int_{u_1(y, z)}^{u_2(y, z)} f(x, y, z) dx \right] dA
$$

Definition 11.5.6: Type 3

A solid region of **type 3** if it is of the form

 $E = \{(x, y, z) | (x, z) \in D, u_1(x, z) \leq y \leq u_2(x, z)\}\$

where, this time, D is the projection of E onto the yz-plane. The back surface is $x = u_1(y, z)$, the front surface is $x = u_2(y, z)$, and we have

$$
\iiint_E f(x, y, z) dV = \iint_D \left[\int_{u_1(x, z)}^{u_2(x, z)} f(x, y, z) dy \right] dA
$$

Property 11.5.7: Application of Triple Integrals

The special case where $f(x, y, z) = 1$ for all points in E. Then all the triple integral does represent the volume of E :

$$
V(E) = \iiint_E \, \mathrm{d}V
$$

11.6 Triple Integral Coordinates

Definition 11.6.1: Cylinder Coordinates

To convert from cylindrical to rectangular coordinates, we use the equation

$$
x = r \cos \theta \qquad \quad y = r \sin \theta \qquad \quad z = z
$$

wheres to convert from rectangular to cylindrical coordinates, we use

$$
r^2 = x^2 + y^2 \qquad \tan \theta = \frac{y}{x} \qquad z = z
$$

Theorem 11.6.2: Formula for Triple Integration in Cylindrical Coordinates

This formula says that we convert a triple integral rectangular to cylindrical coordinates by writing $x =$ $r \cos \theta$, $y = r \sin \theta$, leaving z as it is, using the appropriate limits of integration for z, r and θ , and replacing dV by $rdzdrd\theta$.

$$
\iiint_E f(x, y, z) dV = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} \int_{u_1(r\cos\theta, r\sin\theta)}^{u_2(r\cos\theta, r\sin\theta)} f(r\cos\theta, r\sin\theta, z) r dz dr d\theta
$$

11.7 Triple Integrals in Spherical Coordinates

Definition 11.7.1: Spherical Coordinates

The **spherical coordinates** (ρ , θ , ϕ of a point P in space, where $\rho = |OP|$ is the distance from the origin to P, θ is the same angle as in cylindrical coordinates, and ϕ is the angle between the positive *z*-axis and the line segment OP. Note that

 $\rho \leq 0$ 0 $\leq \phi \leq \pi$

We use the equation below to convert from rectangular to spherical coordinates

 $x = \rho \sin \phi \cos \theta$ $y = \rho \sin \phi \sin \theta$ $z = \rho \cos \phi$

Also, the formula shows that

 $\rho^2 = x^2 + y^2 + z^2$

Definition 11.7.2: Spherical Wedge

In the spherical coordinate system the counterpart of a rectangular box is a **spherical wedge**

$$
E = \{ (\rho, \theta, \phi) \mid a \le \rho \le b, \alpha \le \theta \le \beta, c \le \phi \le d \}
$$

Theorem 11.7.3

$$
\iiint_E f(x, y, z) dV = \int_c^d \int_\alpha^\beta \int_a^b f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 d\rho d\theta d\phi
$$

11.8 Change of Variables in Multiple Integrals

Definition 11.8.1: Transformation

We consider a change of variables that is given by a **transformation** T from the uv -plane to the xy -plane:

$$
T(u,v)=(x,y)
$$

where x and y are related to u and v by the equations

$$
x = g(u, v) \qquad y = h(u, v)
$$

or, as we sometimes write

 $x = x(u, v)$ $y = y(u, v)$

We usually assume that T is a C^1 transformation, which means that g and h have continuous first-order partial derivatives.

If T is a one-to-one transformation, then it has an **inverse transformation** T^{-1} from the xy-plane to the uv-plane and it may be possible to solve the equation for u and v in terms of x and y :

 $u = G(x, y)$ $v = H(x, y)$

Definition 11.8.2: Jacobian

The **Jacobian** of the transformation T given by $x = g(u, v)$ and $y = h(u, v)$ is

$$
\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}
$$

Theorem 11.8.3: Change of Variables in a Double Integral

Suppose that T is a C^1 transformation whose Jacobian is nonzero and that maps a region S in the uv -plane onto a region R in the xy-plane. Suppose that f is continuous on R and that R and S are type I or type II regions. Suppose also that T is one-to-one, except perhaps on the boundary of S . Then

$$
\iint_R f(x, y) dA = \iint_S f(x(u, v), y(u, v)) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| dudv
$$

Definition 11.8.4: Jacobian of Triple Integral

The **Jacobian** of T is a 3×3 determinant. We have the following formula for triple integrals:

$$
\iiint_R f(x, y, z) dV
$$

=
$$
\iiint_S f(f(u, v, w), y(u, v, w), z(u, v, w)) \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| dudvdw
$$

Chapter 12

Vector Calculus

12.1 Vector Fields

Definition 12.1.1: Vector Field on R 2 Let D be a set in \mathbb{R}^2 (a plane region). A **vector field on** \mathbb{R}^2 is a function **F** that assigns to each point (x, y) in D a two-dimensional vector $\mathbf{F}(x, y)$.

Definition 12.1.2: Vector Field on \mathbb{R}^3

Let E be a subset of \mathbb{R}^3 . A **vector field on** \mathbb{R}^3 is a function **F** that assigns to each point (x, y, z) in E a three-dimensional vector $\mathbf{F}(x, y, z)$.

12.2 Line Integrals

Definition 12.2.1: Line Integral of f **along** C

If f is defined on a smooth curve C given by

 $x = x(t)$ $y = y(t)$ $a \le t \le b$

then the **line integral of** f **along** C is

$$
\int_C f(x, y) \, ds = \lim_{\max \Delta s_i \to 0} \sum_{i=1}^n f(x_i^*, y_i^*) \Delta s_i
$$

if this limit exists.

Property 12.2.2: Use Length of C **to evaluate**

 $\int_C f(x,y) \, ds = \int_a^b$ $\int_a^b f(x(t),y(t))\sqrt{\frac{dx}{dt}}$ $\frac{dx}{dt}$)² + ($\frac{dy}{dt}$ $\frac{dy}{dt}$ ² dt **Definition 12.2.3: Line Integral with respect to** x **and** y

$$
\int_C f(x, y) dx = \int_a^b f(x(t), y(t))x'(t) dt
$$

$$
\int_C f(x, y) dy = \int_a^b f(x(t), y(t))y'(t) dt
$$

Definition 12.2.4: Line Integral of Vector Fields

Let **F** be a continuous vector field defined on a smooth curve C given by a vector function $r(t)$, $a \le t \le b$. Then the **line integral of** F **along** C is

$$
\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, ds = \int_C \mathbf{F} \cdot \mathbf{T} \, ds
$$

Property 12.2.5

$$
\int_C \mathbf{F} \cdot \, \mathrm{d}r = \int_C P \, \mathrm{d}x + Q \mathrm{d}y + R \mathrm{d}z \qquad \text{where } \mathbf{F} = P\mathbf{i} + Q\mathbf{k} + R\mathbf{k}
$$

12.3 The Fundamental Theorem for Line Integrals

Theorem 12.3.1: The Fundamental Theorem of Calculus

$$
\int_a^b F'(x) \, dx = f(\mathbf{r}(b)) - f(\mathbf{r}(a))
$$

Theorem 12.3.2: The Fundamental Theorem for Line Integrals

Let C be a smooth curve given by the vector function $r(t)$, $a \le t \le b$. Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C. Then

$$
\int_C \nabla f \cdot \, \mathrm{d}r = f(\mathbf{r}(b)) - f(\mathbf{r}(a))
$$

Theorem 12.3.3: Independent of Path

 $\int_C F \cdot dr$ is independent of path in D if and only if $\int_C F \cdot dr = 0$ for every closed path C in D.

Theorem 12.3.4

Suppose F is a vector field that is continuous on an open connected region D. If \int_C F \cdot dr is independent of path in D, then F is a conservative vector filed on D; that is, there exists a function f such that $\nabla f = \mathbf{F}$.

Theorem 12.3.5

If $F(x, y) = P(x, y)$ **i** + $Q(x, y)$ **j** is a conservative vector field, where P and Q have continuous first-order partial derivatives on a domain D , then throughout D we have

$$
\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}
$$

Theorem 12.3.6: Test Conservative

Let $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ be a vector field on an open simply-connected region D. Suppose that P and Q have continuous first-order derivatives and

$$
\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}
$$
 throughout D

Then F is conservative.

12.4 Green's Theorem

Theorem 12.4.1: Green's Theorem

Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C. If P and Q have continuous partial derivatives on an open region that contains D , then

$$
\int_C P dx + Q dy = \iint_D \left(\frac{\partial P}{\partial x} - \frac{\partial P}{\partial y} \right) dA
$$

 \boldsymbol{x}

 \mathcal{V} \overline{C} \overline{D} $\overline{0}$ \mathbf{x}

(b) Negative orientation

Property 12.4.2

The Green's Theorem gives the following formulas for the area of D:

$$
A = \oint_C x \, \mathrm{d}y = -\oint_C y \, \mathrm{d}x = \frac{1}{2} \oint_C x \, \mathrm{d}y - y \, \mathrm{d}x
$$

12.5 Curl and Divergence

Definition 12.5.1: Curl

If $F = Pi + Qj + Rk$ is a vector field on \mathbb{R}^3 and the partial derivative of P, Q , and R all exist, then the **curl** of **F** is the vector field on \mathbb{R}^3 defined by

$$
\operatorname{curl} \mathbf{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mathbf{k}
$$

Remember the definition by means of the symbolic expression:

curl $\mathbf{F} = \nabla \times \mathbf{F}$

Theorem 12.5.2

If f is a function of three variables that has continuous second-order partial derivatives, then

```
curl(\nablaf) = 0
```
Theorem 12.5.3

If F is a vector field defined on all of \mathbb{R}^3 whose components functions have continuous partial derivatives and curl $F = 0$, then F is a conservative vector field.

Definition 12.5.4: Divergence of F

If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector on \mathbb{R}^3 and $\frac{\partial P}{\partial x}$, $\frac{\partial Q}{\partial y}$, and $\frac{\partial R}{\partial z}$ exist, then the **divergence of F** is the function of three variables defined by

$$
\operatorname{div} \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}
$$

In terms of the gradient operator, the divergence of F can be written symbolically:

div $\mathbf{F} = \nabla \cdot \mathbf{F}$

Theorem 12.5.5

If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 and P, Q , and R have continuous second-order partial derivatives, then

div curl $\mathbf{F} = 0$

Theorem 12.5.6: Vector Forms of Green's Theorem

 $\oint_C \mathbf{F} \, \mathrm{d}\mathbf{r} = \iint_D (\text{curl } \mathbf{F}) \cdot \mathbf{k} \, \mathrm{d}A$

A second vector form of Green's Theorem:

$$
\oint_C \mathbf{F} \cdot \mathbf{n} \, dt = \iint_D \text{div } \mathbf{F}(x, y) \, dA
$$

12.6 Parametric Surface and Their Areas

Definition 12.6.1: Parametric Surface

We suppose that

$$
\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}
$$

is a vector-valued function defined on a region D in the uv-plane. So x, y , and z , the component functions of r , are functions of the two variables u and v with domain D . The set of all points (x, y, z) in \mathbb{R}^3 such that

$$
x = x(u, v) \qquad y = y(u, v) \qquad z = z(u, v)
$$

and (u, v) varies throughout D, is called **parametric surface** S and the second equation is called **parametric equations of** S.

Definition 12.6.2: Parametric Surface

If a smooth parametric surface S is given by the equation

$$
\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k} \qquad (u,v) \in D
$$

and S is covered just once as (u, v) ranges throughout the parameter domain D, then the **surface area** of S is

$$
A(S) = \iint_D |\mathbf{r}_u \times \mathbf{r}_v| \, dA
$$

where

$$
\mathbf{r}_u = \frac{\partial x}{\partial u}\mathbf{i} + \frac{\partial y}{\partial u}\mathbf{j} + \frac{\partial z}{\partial u}\mathbf{k} \qquad \mathbf{r}_v = \frac{\partial x}{\partial v}\mathbf{i} + \frac{\partial y}{\partial v}\mathbf{j} + \frac{\partial z}{\partial v}\mathbf{k}
$$

Definition 12.6.3: Surface Area Formula

$$
A(S) = \iint_D \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dA
$$

12.7 Surface Integrals

If the components are continuous, and $\mathbf{r}_u, \mathbf{r}_v$ are nonzero and nonparallel in the interior of D, it can be shown from Definition 1, even when D is not a rectangle, that

$$
\iint_{S} f(x, y, z) \, \mathrm{d}S = \iint_{S} f(\mathbf{r}(u, v)) |\mathbf{r}_{u} \times \mathbf{r}_{v}| \, \mathrm{d}A
$$

Observe also that

$$
\iint_S 1\:\mathrm{d} S = \iint_S \! |\mathbf{r}_u \times \mathbf{r}_v| \:\mathrm{d} A
$$

MATH226 Final Review Jacob Ma

Definition 12.7.2: Surface Integrals in Graph point of view

An surface S with the equation $z = g(x, y)$ can be regarded as a parametric surface with parametric equation

 $x = x$ $y = y$ $z = g(x, y)$

and so we have

$$
\mathbf{r}_x = \mathbf{i} + \left(\frac{\partial g}{\partial x}\right)\mathbf{k} \qquad \mathbf{r}_y = \mathbf{j} + \left(\frac{\partial g}{\partial y}\right)\mathbf{k}
$$

Thus

 $\mathbf{r}_x \times \mathbf{r}_y = -\frac{\partial g}{\partial x} - \frac{\partial g}{\partial y} \mathbf{j} + \mathbf{k}$

and

$$
|\mathbf{r}_x \times \mathbf{r}_y| = \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + 1}
$$

Therefore, in this case, Formula 2 becomes

$$
\iint_S f(x, y, z) \, dS = \iint_D f(x, y, g(x, y)) \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + 1} \, dA
$$

Definition 12.7.3: Surface Integral in Oriented Surfaces

For a surface $z = g(x, y)$ given as the graph of g, we use Equation 3 to associate with the surface a natural orientation given by the unit normal vector

$$
\mathbf{n} = \frac{\mathbf{r}_x \times \mathbf{r}_y}{|\mathbf{r}_x \times \mathbf{r}_y|} = \frac{-\frac{\partial g}{\partial x}\mathbf{i} - \frac{\partial g}{\partial y}\mathbf{j} + \mathbf{k}}{\sqrt{1 + \left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2}}
$$

Definition 12.7.4: Surface Integral of Vector Fields

If F is a continuous vector field defined on an oriented surface S with unit vector n, then the **surface integral of** F **over** S is

$$
\iint_{S} \mathbf{F} \cdot \, \mathrm{d} \mathbb{S} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, \mathrm{d} S
$$

This integral is also called the **flux** of F across S.

If S is given by a vector function $r(u, v)$, then n is given by Equation 6, we have

$$
\iint_S \mathbf{F} \cdot \, \mathrm{d}S = \iint_D \mathbf{F} \cdot (\mathbf{r}_u \times \mathbf{r}_v) \, \mathrm{d}A
$$

In the case of a surface S given by a graph $z = g(x, y)$, we can think of x and y as parameters and use Equation 3 to write

$$
\mathbf{F} \cdot (\mathbf{r}_x \times \mathbf{r}_y) = (P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}) \cdot \left(-\frac{\partial g}{\partial x} \mathbf{i} - \frac{\partial g}{\partial y} \mathbf{j} + \mathbf{k} \right)
$$

Thus **Surface integrals of vector fields in graph point of view** is

$$
\iint_{S} \mathbf{D} \cdot d\mathbf{S} = \iint_{S} \left(-P \frac{\partial g}{\partial x} - Q \frac{\partial g}{\partial y} + R \right) dA
$$

12.8 Stoke's Theorem

Theorem 12.8.1: Stoke's Theorem

Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation. Let $\mathbb F$ be a vector field whose components have continuous partial derivatives on an open region in \mathbb{R}^3 that contains S. Then

$$
\int_C \mathbf{F} \cdot \, \mathrm{d}\mathbf{r} = \iint_S \mathbf{curl} \mathbf{F} \cdot \, \mathrm{d}\mathbf{S}
$$

12.9 The Divergence Theorem

Theorem 12.9.1: The Divergence Theorem

Let E be a simple solid region and let S be the boundary surface of E , given with positive (outward) orientation. Let F be a vector field whose component functions have continuous partial derivatives on an open region that contains ${\cal E}.$ Then

$$
\iint_S \mathbf{F} \cdot \, \mathrm{d} \mathbf{S} = \iiint_E \mathrm{div} \mathbf{F} \, \mathrm{d} V
$$